
## **BOOK OF ABSTRACTS**

as received by January 5, 1990



20th European Conference on Laser Interaction with Matter Schliersee, January 22 - 26, 1990

organized by

Max-Planck-Institut für Quantenoptik, D-8046 Garching, Fed. Rep. of Germany

## STUDY OF X RAY EMISSION FROM LASER-PLASMAS PRODUCED FROM THIN FILMS

L.Gizzi, <u>D.Batani</u>, V.Biancalana, A.Giulietti, D.Giulietti
Istituto di Fisica Atomica e Molecolare - CNR

Via del Giardino 7 - 56100 Pisa - Italy

We report on a study of x-ray emission from laser-plasmas produced by irradiating thin plastic films (d  $\leq$  2  $\mu$ m, Formvar) with a 1.064  $\mu$ m Nd laser at intensities up to 5  $10^{13}$  W/cm<sup>2</sup> with a 3 nsec pulse.

The x-ray signal was measured with a silicon p-i-n detector and x-ray images of the emission region where taken with a pin-hole camera on kodak DEF and SB films. Both instruments were filtered with thinAl foils (d =  $1.6 - 13 \mu m$ ). Pin-hole pictures showed that x-rays are emitted when the plasma density is still above critical, before the laser burns through. We used the p-i-n detector with different filters to record the bremstrahlung spectrum of our plasma: we could then calculate the electron temperature  $T_e$  which was  $\leq 300 \text{ eV}$ .

Our data evidenced a deviation of spectra from the exponential slope when films were irradiated at intensities  $\geq 5~10^{12}~\mathrm{W/cm^2}$ . This was connected with the formation of non-thermal tails of hot electrons which have in turn been related to filamentation and TPD instabilities evidenced in our experimental conditions with visible, time-resolved spectroscopic techniques.

The simple dependance of bremstrahlung emission on n<sub>e</sub> and T<sub>e</sub>, allowed a direct comparison with the predictions of the London and Rosen self-similar model, used to calculate the evolutions of the plasma parameters.