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Abstract

Laser-plasma interferograms are currently analyzed

by extracting the phase-shift map with FFT techniques.

This methodology works well when interferogram im-

ages are marginally corrupted by noise and reduction

of fringe visibility, but it frequently fails when dealing

with low-quality images.

In this note we will present a novel approach to the

phase-shift map computation procedure which makes

an extensive use of the Continuous Wavelet Trans-

form tool. We compare the performances of the new

technique, which will call IACRE , "Interferogram

Analysis by Continuous wavelet trasform Ridge Ex-

traction", with the standard FFT-based one analyzing

four di�erent interferograms. We will show that such

a new procedure is considerably more robust than the

FFT-based one, particularly in the case of strongly

noisy fringe patterns.

We will also shortly describe the original "Inte-

grated Laser-Plasma Inteferogram Analyzer" software

developed by our group, by which it is possible to an-

alyze laser-plasma interferograms by using both the

FFT-based and IACRE methods to extract phase-shifts

and to compute the electronic density in the case of

cylindrical symmetry.

1 Introduction

Interferometric techniques are widely used to char-

acterize the physical properties of a variety of opti-

cal media. An important class of applications con-

cerns the investigation of the density distribution of

plasmas produced by high power laser-matter interac-

tions. In recent years various interferometer schemes

have been developed and successfully applied to the

characterisation of the wide range of plasma condi-

tion which can be achieved in laser-plasma experi-

ments, from the long-scalelength underdense plasma

generated by laser explosion of a thin foil target to

the steep, denser plasma generated by short pulse in-

teraction with a solid target. All these schemes make

use of a so-called probe beam which consists of a laser

pulse which probes the plasma at a given time. In

one of these schemes, referred to as the modi�ed No-

marski interferometer [1][2] [3], a portion of this beam

propagates through the plasma and carries the phase

shift information. Finally this portion of the beam

is made to interfere with an unperturbed portion to

generate a fringe pattern. The fringe pattern must be

then analysed to obtain the two-dimensional phase-

shift which contains the physical information on the

plasma. Then, provided that appropriate symmetry

conditions are satis�ed, inversion techniques can be

applied to the phase shift pattern to obtain the den-

sity pro�le.

The simplest way of reading a fringe pattern con-

sists in building a grid over the pattern and in mea-

suring, for each position on the grid, the number of

fringe jumps with respect to the unperturbed fringe

structure. This procedure is very simple and can be

performed manually. However, the amount of infor-

mation which can be extracted in this way is very

limited due to the small number of grid points that

can be employed.

1



In 1982 a novel fringe analysis technique was pro-

posed [4] in which the phase extraction was carried

out using a procedure based upon Fourier transform.

This technique allows the information carried by the

fringe position on the �lm to be decoupled by spa-

tial variations of the background intensity as well as

by variations in the fringe visibility, provided that

the scalelength of such perturbations is large com-

pared to the fringe separation. A few years later this

FFT technique was applied for the �rst time to laser-

produced plasmas [5]. More recently the technique

was extensively applied by our group to the analy-

sis of long-scalelength underdense laser-plasmas [6] In

recent years great advances in the interferometry of

laser-plasmas has been achieved using sub-picosecond

probe pulses. The use of short pulses as probes has

the great advantage of reducing dramatically of the

fringe-smearing e�ect due to the motion of the plasma

during the probe pulse. This scheme was successfully

carried out to investigate short-lived phenomena in

the propagation of ultra-short laser pulses with plas-

mas [7]. The extensive use of the FFT based tech-

nique carried out by our group has shown that this

technique is in general fast and very e�ective. In some

circumstances however, when short probe pulses are

used, background noise and reduced fringe visibility

make the FFT based analysis technique unstable and

the results are not fully satisfactory and more robust

analysis techniques are needed.

In this report we show that Continuous Wavelet

Transform can be successfully applied to the analy-

sis of interferograms resulting in a much more 
exi-

ble and reliable than the FFT based technique. To

our knowledge, this is the �rst time that a Continu-

ous Wavelet Transform approach is applied to fringe

pattern analysis and in particular to interferometric

analysis in laser-produced plasmas.

In section 2 we will shortly introduce the Continu-

ous Wavelet Transform (CWT), stressing its remark-

able properties of good space-scale analyzer.

In section 3 we introduce the IACRE tool and we

compare its performance with the FFT-based one.

In section 4 we shortly describe the software im-

plementation of the new method developed by our

group: a Graphics Interface integrated tool running

under MATLAB.

Section 5 is devoted to comments and further ac-

tivity description.

Figure 1: The signal s1: a sinusoid with a well lo-

calized event. The signal s2: a frequency-modulated

sinusoid.

2 A short introduction to Con-

tinuous Wavelet Analysis

2.1 The need for a time-frequency anal-

ysis

The ContinuousWavelet Transform is a tool to obtain

a signal representation which is intermediate between

the "real time" description s = s(t) and the "spec-

tral" description ŝ = ŝ(!), so that it is a very pow-

erful tool to obtain a space-scale (or time-frequency)

description of a sequence of data.

The need of a time-frequency description of a se-

quence is much strong in cases of well-localized events

in the signal or when the signal represents a sum of

frequency-modulated components (as for each section

of an interferogram image (see section 4). Consider

for example the two signals(see �gure Fig. 1):

s1 = sin ((2�t) + a Æ(t� t0)) ;

s2 = sin
�
(2�t)(1 + b

p
t)
�
: (2.1)

Apart from the presence of a "jump" at time t0,

the �rst signal is a pure sinusoid. The second signal,

instead, is a frequency-modulated sinusoid. What's

about FFT coeÆcients? What can be learned from

them? Let's look Fig. 2; the module of the FFT coef-

�cients for s1 tells us that the main component of the

signal is a sinusoid (the sharp peak), but nothing can

be inferred about the departure of the signal from a

pure sine: neither if such departure is periodic nor, if
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Figure 2: Fast Fourier Transform of s1 and s2. The

dashed line in the top frame represents the module of

the FFT coeÆcients for a pure sinus.

not, if it is well localized in time (and consequently

at which time is concentrated). The modulus of the

FFT coeÆcients for s2 are even less helpful in sug-

gesting us the structure of the signal: a broad band

of frequencies is present and no main frequency can

be found. These simple examples show that a "full

spectral" analysis could be unsatisfactory if we are

interested in the knowledge of both the spectral con-

tain and time structure of a signal.

The obvious step that can be made to overcome

the lack of time sensitivity is the introduction of a

sequence of windows of a given width and centered

at di�erent times: for each window the FFT of the

signal is computed and a partial time resolution is

obtained. These techniques are called "Short-Time

Fourier Transform" or "Windowed Fourier Transform"

or "Gabor Transform" [9]. The Gabor Transform is

currently used in many context but is not considered

by the signal-processing community a "full analysis

tool". This is because the number of oscillations of

each sinus in the window depends on the frequency

and consequently the spectral and spatial resolutions

should be optimized (by tuning the window length)

only in a narrow band.

From the early 80's, with the introduction of the

Wavelet Transform, a satisfying time-frequency anal-

ysis tool is available [10] [11] [12].

2.2 The ContinuousWavelet Transform

To introduce the Wavelet Transform, let us �rst de-

�ne notations for the Fourier Transform. For a signal

s �L
1(R)\L2(R) the Fourier coeÆcients, that is the

scalar product between the signal and the in�nitely

oscillating terms e! = e
�i !t:

ŝ(!) �< e!js >=
Z
1

�1

dte
�i !t

s(t) (2.2)

form a complete basis of the space to which s belongs

and an inverse Fourier transform can be applied to

ŝ(!) to recover s: s(t) =
R
1

�1

d
!

2�
e
i !t

ŝ(!).

Let us introduce a function 	(t) called Mother

wavelet. Now, instead of decomposing the signal s

as a sum of the pure oscillating terms e! (Fourier

Transform), we build a decomposition of s in terms

of the base of all the translated (with parameter

b) bf and scaled (with parameter a) 	 (Continuous

Wavelet Transform). The basis of the Continuous

Wavelet Transform (CWT) is than a two-parameter

family of functions

	a;b(t) �
1

a
	

�
(t� b)

a

�
: (2.3)

The choice of the Mother Wavelet used to build

the analyzing base is quite free (with a restriction

that will be shown below) and must be adapted to

the actual information that should be extracted from

the signal. This is an important topics that the reader

may deepen with the help of reference [11].

Once the two-parameter base has been built, one

can compute the CWT coeÆcients as

Ws(a; b) � < 	a;bjs > (2.4)

=

Z
1

�1

dt
1

a
	

�
(t� b)

a

�
s(t);

( [a; b] 2 R; a > 0 )

or, with the help of Fourier Transform, as [11]

Ws(a; b) =
1

2�

Z
1

�1

d!	̂(a!)ei ! b
ŝ(!) : (2.5)

If the Mother Wavelet 	 has zero mean (admis-

sibility condition), than an inversion algorithm can
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Figure 3: The real part of Morlet Mother Wavelet.

!0 = 2�;� = 4.

be applied [12]; the simpler procedure to recover the

signal s from its Wavelet transform is the so-called

"Morlet inversion formula"

s(t) =
1

k	

Z
1

0

Ws(a; b)
da

a
(2.6)

where it is assumed that

k	 =

Z
1

0

	̂(a�)
da

a

is �nite, nonzero and independent on �.

In the subset of admissible wavelets, "Morlet-family"

wavelets are largely used in studying signals with

strong components of pure sinus or modulated sinu-

soids. The Morlet base has the form

	(t) = e
i !0t e

�(t=�)2
; (2.7)

where the parameters !0 and � control the peak fre-

quency and the width of the wave respectively. The

product !0 � � controls the time and spectral resolu-

tion of the Wavelet decomposition: a large � corre-

sponds to a long wave (high spectral resolution and

low temporal resolution) while a small � produces an

"event based" analysis (low spectral resolution and

high temporal resolution).

We now face the problem of a numerical compu-

tation of the Wavelet coeÆcients mapWs(a; b). For a

sequence of N samples si; i = 1:::N of s, the transla-

tion parameter b (which controls the central position

of the wave envelope) can be sampled in a straightfor-

ward way: b ! bi; i = 1:::N . The scaling parameter
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y

Absolute value of CWT. Pure sinus

b ~ time

1/
a 

~
 fr

eq
ue

nc
y

Figure 4: The real part and absolute value CWT maps

of a pure sinus with Morlet Mother Wavelet.

a (which controls the characteristic scale of the wave)

may be sampled in two main ways:

� Linear frequency sampling: 2�
aj

= k1 +
j

M
k2 � k1; j = 1:::M ; where k1 and k2 are the

lower and upper wave vectors which are ana-

lyzed.

� Natural sampling or Log sampling: aj =

2�j=Nv j = 1:::M ; where Nv is the "number of

voices per octave" parameter. Each aj is called

"voice" and, in the case Nv = 12, Log sam-

pling exactly corresponds to the spectral sam-

pling of musical tones in the "tempered scale"

introduced by J.S. Bach [16]

The Log sampling of CWT coeÆcients in the Mor-

let basis is very useful when the spectral content of

the signal is the main information to be extracted,

because it provides a good compromise between spa-

tial and spectral resolution. As the reader can easily

check, the spectral resolution at each voice is propor-

tional to the peak frequency of the voice
�
!o

a

�
so that

the relative spectral uncertainty �f

f
is constant along

the a axes.

To familiarize with the CWT map, we compute

the CWT coeÆcients of a pure sine signal. Figure

Fig. 4 shows both the real part and the absolute value

of CWT coeÆcients in the Log sampling (Nv = 24).

In these �gures CWT maps are organized with "fre-

quencies" increasing from the top to the bottom. The

absolute value of CWT map is almost zero, apart

from a thin horizontal band centered at a scale corre-

sponding to the input signal frequency: Continuous
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Figure 5: The absolute value CWT map of a pure

sinus of Morlet Mother Wavelet: a zoom @b constant.
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a pure sinus with Morlet Mother Wavelet @ Ridge.

Wavelet Transform may be a good spectral analyzer

even for perfectly periodic signals [16] (see also Fig.

5 in which a "zoom", that is a section of the absolute

value of CWT map at b = const:, is shown).

The real part of CWT map shows a second impor-

tant feature of CWT with Morlet (or generally with

progressive) basis: R(Ws) is almost constant, apart

from the thin band centered at the signal frequency.

The sequence

Rs(b) � R(Ws)(b; aR(b)) (2.8)

where for each b� aR(b
�) is the voice corresponding to

a local maximum of the zoom of abs(CWT ) at b = b
�,

well reproduces the input signal itself, as is shown in

Fig. 6.

The sequence (ore more generally the sequences

when more complex signals are analyzed) 2.8 is called

the Ridge of CWT map and represents the subset of

CWT map where most of the "energy" is contained.

To familiarize with Ridge properties, let us consider

a signal of the form:

s(t) = A(t) cos(�(t)) (2.9)

where A(t) is assumed be slowly varying with respect

to the oscillations, that is

1

A

dA

dt
<< �

0

:

If 	 is a progressive Wavelet, then with straightfor-

ward computations including "stationary phase meth-

ods" we have (see [14] and [13])

Ws(a; b) �
1

2
A(b)ei �(b)	̂(a�0(b)) : (2.10)

Since 	̂ is centered at ! = !0, 	̂(a�
0(b)) is not neg-

ligible if

a � aR(b) �
!0

�0(b)
(2.11)

which means that the energy of the CWT map is

localized around a thin curve, the Ridge curve. To

conclude, it is interesting to note that the "instanta-

neous frequency", that is the time derivative of the

phase �(t)


(t) � �
0(t) ;

can be easily extracted from the Ridge curve: for each

b, as corollary of (2.10), aR(b) is linked to 
 as


(b) =
!0

aR(b)
:

Let us now compare FFT and CWT analysis of

signals s1 and s2 (�gure Fig. 1). The CWT map of

signal s1 is reproduced in Fig. 7. Unlike FFT map, in

Fig. 7 is evident that the signal s1 is something like a

pure sine of measurable frequency plus some localized

event at a detectable time t0. In addition, since the

shape of the CWT of the most localized inputs are

well known, on can easily recognize that the event is

similar to a delta shot.

The analysis of the CWT map of signal s2 (see

Fig. 8) is more interesting for our scope. The map

shows a single ridge, then a single frequency-modulated
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Figure 7: The real part and absolute value CWT maps

of a signal s1 with Morlet Mother Wavelet.
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Figure 8: The real part and absolute value CWT maps

of a signal s2 with Morlet Mother Wavelet.
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Figure 9: The sequence of real part of CWT map of

signal s2 with Morlet Mother Wavelet @ Ridge

signal is present with instantaneous frequency 
(b)

increasing with time. The Ridge sequence Rs2(b) �
R(Ws2)(b; aR(b)) is shown in Fig. 9 and it is com-

pared with the input signal s2 itself. Apart from

boundary-generated errors, the Ridge sequence well

reproduces the input signal; this means that the Ridge

CWT sub-map succeed in capturing the signal charac-

teristics as for example instantaneous intensity, phase

and frequency. This is the main characteristic of

CWT analysis which will constitute the core of the

IACRE interferograms analysis (see next section).

2.3 Noisy data

We now face one of the most relevant problems in

signal processing: the identi�cation and (eventually)

the parameters estimation of a noisy signal. Ridge

analysis of CWT map plays a rising role in signal

processing, especially in the search of non-stationary

signals with a very low SNR ratio (see [15] and refer-

ences therein).

To explore CWT performances in the presence of

noisy data, we add gaussian noise to signal s2 (see

Fig. 10) and compute the CWT map (Fig. 11). The

presence of noise (in this case at SNR = 0.8) does not

destroy the Ridge structure and the resulting Ridge

detection gives rise to the sequence Rs2+noise(b) �
R(Ws2+noise)(b; aR(b)) reproduced in Fig. 12. As

it is clear in Fig. 12 the Ridge sub-map well cap-

tures the "true" input signal even in the presence of

a quite strong noise. This is the reason why one of

the applications of Wavelet Transform is the denois-

ing of one dimensional data. To conclude, we stress
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(SNR = 0.8) .

Figure 13: A sample interferogram Int1 of a plasma

produced by laser explosion of a 0:5�m thick, 400�m

diameter Aluminium dot coated onto a 0:1�m plastic

stripe support. The interferogram was taken 3:0ns

after the peak of the plasma forming pulses using a

modi�ed Nomarski interferometer. The intensity on

target was 8:5� 1013W=cm
2. The probe pulse-length

was 100ps and the probe wavelength was 0:53�m. For

details on the experimental set-up see [6]

that the extraction Ridge sequence of the CWT map

constitutes a complete and robust method to denoise

and identify a sequence made by (eventually a sum

of) frequency-modulated harmonic terms.

3 Comparison between the FFT-

based and the IACRE meth-

ods to extract phase-shift map

from interferograms

3.1 The FFT-based method for phase-

shift estimation

The extraction of phase-shift map, that is the com-

putation for each pixel of an interferogram image of

the phase-shift with respect to a unperturbed wave

pro�le, is usually performed with the help of Fast

Fourier Transform (FFT-based method). Consider

for example the interferogram of Fig. 13, whose gray-

level map be I(z; x) and for each Z build the se-

quence sZ � I(z = Z; x) (that is a horizontal sec-
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Figure 14: A section of the interferogram Int1 at

Z = 400 (bulk).

tion of the �gure). For a unperturbed interferogram

image the sequences sZ should be similar to pure os-

cillating terms plus noise and (eventually) a slowly

varying background. If the departure of such a be-

haviour is identi�ed as a local frequency modulation

of the oscillating term, than the phase-shift Æ�(z; x)

can be easily computed as the di�erence between the

"true" phase at each x position and the correspond-

ing phase of the not-perturbed sequence. Figure Fig.

14 shows a sequence sZ for Z = 400 (the middle of

the frame). The behaviour of sZ can be identi�ed as a

frequency-modulated oscillation with local frequency


(x) increasing with x, plus noise and slowly rising

background. In addition, the amplitude of oscilla-

tions sharply reduces for x � 700 (this phenomenon

is known as "reduction of fringe visibility", see [6]).

The FFT-based phase-shift extraction uses FFT

for both �ltering the sequence from noise and back-

ground (with cuts in the spatial frequency domain in-

troduced by hand) and extracting the phase by using

straightforward FFT coeÆcients manipulations [6].

3.2 The IACRE phase-shift estimation:

an introduction

To introduce the IACREmethod to extract the phase-

shift, let us observe that the sequence sZ (and gener-

ally each sequence I(z = Z; x)) has the same struc-

ture of the signal s2, that is a frequency-modulated

sequence plus some corrections (noise, slowly varying

background). It is then therefore natural to try to

extract the sZ phase-shits by using CWT techniques,

with Ridge detection playing a relevant role.
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Figure 15: The real part and absolute value CWT

maps of a signal sZ @Z = 400 with Morlet Mother

Wavelet.

Consider the CWT map of the sequence sZ @Z =

400 (see Fig. 15); its aspect is similar to the CWT

map of the s2 signal (Fig. 8), apart from the pres-

ence of a background (a large spot on small frequen-

cies, that is on the top of the map) and a reduction

of the Ridge intensity for x � 700. We can than

try to apply the Ridge-extraction technique to the

CWT map of sZ to both denoise the sequence and ex-

tract the phase for each pixel position x. The Ridge

sequence will be constituted by only the frequency-

modulated components of sZ , so that noise and back-

ground will be automatically discarded. This is the

case for sZ @Z = 400, as it is clear in Fig. 16 and in

the zoom on the right hand tail (Fig. 17). The phase

sequence �Z(x) for the analyzed array sZ is then sim-

ply computed as the phase of the complex sequence

of CWT at the Ridge:

�sZ (x) � phase ((WsZ )(x; aR(x))) ; (3.12)

and the phase-shift Æ�sZ (x) is obtained as

Æ�sZ (x) � �sZ (x)� �0(x) ; (3.13)

where �0(x) = kp x and kp is the wavenumber of the

not-perturbed fringes.

3.3 The IACRE method step-by-step

Let us now examine the recipe for the IACRE algo-

rithm. Let Be I(z; x) the gray-level image matrix of
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Figure 17: The sequence of real part of CWT map of

signal sZ@Z = 400 with Morlet Mother Wavelet @

Ridge. Zoom on the right hand tail.

dimension M �N . The �rst steps are the estimation

of the unperturbed fringe wavelength kp and (even-

tually) image �ltering to slightly reduce noise. Next

for each Z 2 [1M ] we consider the sequence

sZ(x) � I(z = Z; x) ; x 2 [1N ]

and:

� (I) Compute the (complex) CWT map

WZ(a; b)

with the Morlet base in the Log sampling.

To do this one must choose the number of voices

per octave Nv. A large Nv (Nv > 12) should be

preferred if fast changes in the local frequency


(x) are expected. In addition, if we expect

that in some regions the local frequency 
Z(x)

could have abrupt changes (local irregularities,

structures, edges ...), a higher spatial resolution

is preferred (!0 = 2�, � < 1), while for regular

behaviour (like the one of interferogram Int 1) a

medium space-frequency resolutions should be

used (� = 1).

� (II) Detect the (complex) Ridge sequence

RZ(x) �WsZ (x; aR(x)) :

� (III) Compute the phase of RZ :

�Z(x) = phase(RZ(x)) :

� (IV) Estimate the phase-shift at z = Z as

Æ�(Z; x) � �Z(x)� kp :x

The result is a phase-shift matrix Æ�(z; x) of dimen-

sion M �N . Phase unwrapping algorithms are then

applied to the phase-shift map to eliminate unphys-

ical phase jumps (this is the case for FFT-based re-

sults too).

3.4 IACRE results versus FFT-based re-

sults

Let us apply the method to the whole interferomet-

ric image Fig. 13. The �rst result is obtained with

the undenoised image, Nv = 12 voices per octave

(low Nv). The phase shift matrix is shown in Fig.

18, which should be compared with the FFT-method

9



Figure 18: The phase-shift map (in 2� units) of the

not �ltered Int1 image Fig. 13. CWT method

Figure 19: The phase-shift map (in 2� units) of the

not �ltered Int1 image Fig. 13. FFT method

Figure 20: The phase-shift map (in 2� units) of the

of the Median-�ltered (3�3)+ Wiener-�ltered (5�5)

Int1 image Fig. 13. CWT method

phase-shift map of Fig. 19. As is clear from the

�gures, the IACRE method succeeds in generating

a clear phase-shift map for the un�ltered image Fig.

13, while the with FFT-based method the output is

unsatisfactory because it presents several unphysical

phase jumps.

In the next two �gures, see (Fig. 20) and (Fig.

21), we compare the performances of CWT and FFT

based methods for the same interferogram now par-

tially �ltered from noise with a Median-Filter of mask

size 3 � 3 pixels followed by a Wiener-Filter 5 � 5.

While the CWT output seems to be good (and basi-

cally identical to the not denoised image), FFT out-

put still remain noisy and not satisfying due to the

presence of (not physical) phase jumps.

Let us apply the methods to a di�erent interfer-

ogram (see Fig. 22 for interferogram Int2), in which

fringes are visible everywhere. As before, the �rst two

results are obtained with a not �ltered image (see im-

ages Fig. 23 and Fig. 24), while �gures Fig. 25 and

Fig. 26 show the results for the 5� 5 median-�ltered

image Fig. 22. Figures Figg. 23, 24, 25, 26 show

that, while the IACRE output is a continuous map, in

both the not �ltered and the �ltered images the FFT-

based output is noisy and not free from phase jumps.

This behaviour for the FFT-b output is caused by

a strong presence of noise, which could not be com-

pletely removed preserving the fringe structure. In-

stead, the noise seems not disturb the IACRE phase-

shift computation which produces reasonable results

10



Figure 21: The phase-shift map (in 2� units) of the

Median-�ltered (5�5) + Wiener-�ltered (5�5) Int1

image Fig. 13. FFT method

Figure 22: A sample interferogram Int2 obtained in

similar conditions as Int1 but with the probe pulse

reaching the plasma at a later time (4:3ns).

Figure 23: The phase-shift map (in 2� units) of the

of the un�ltered Int2 image Fig. 22. CWT method

Figure 24: The phase-shift map (in 2� units) of the

not �ltered Int2 image Fig. 22. FFT method

Figure 25: The phase-shift map (in 2� units) of the

of the Median-�ltered (5 � 5) Int 2 image Fig. 22.

CWT method

11



Figure 26: The phase-shift map (in 2� units) of the

Median-�ltered (5 � 5) Int 2 image Fig. 22. FFT

method

even with the not denoised image.

To end the comparison between the CWT and

FFT based approaches, let us apply the methods to

two interferograms Int 3 (see Fig. 27) and Int 4

(see �gure Fig. 28), where localized e�ects due to

a plasma channel formation are under investigation.

The four images Figg. 29, 30, 31 and 32) are referred

to the phase-shift maps of the not �ltered Int 3 image

and the 3� 3 Median �ltered + 5� 5 Wiener �ltered

image Fig. 27. From �gures Figg. 30 and 32 we can

see that the FFT outputs of Int 3 are satisfying but

still noisy, while the IACRE outputs are both very

accurate and free from noise.

The output of IACRE method for the not de-

noised image of Int4 is shown in Fig. 33, which

should be compared with the FFT-based phase-shift

map (�gure 34) of the Median �ltered + Wiener �l-

tered 3 � 3 Int 4 image. Since image Int 4 is very

noisy and presents strong decrease of fringe visibil-

ity at the channel boundary, standard FFT method

clearly fails in detecting phase-shift map. Instead,

the IACRE method (Nv = 24; !0 = 2�; � = 0:25)

well captures the phase-shift map even in the critical

zones at the channel boundary.

Let us conclude this section with some comments

about IACRE and FFT-based behaviours with sub-

optimal images:

� (1) The application of the two techniques to

un�ltered (noisy) images led to unsatisfactory

Figure 27: A sample interferogram Int3 of a channel

in a preformed plasma generated by ultra-relativistic

laser-plasma interactions with preformed plasmas.

The preformed plasma was generated using a simi-

lar technique as in the case of Int1. A relativistically

intense laser pulse is then focused in the preformed

plasma where it creates a density channel [8]. The

probe pulse in this case was 1ps pulselength 0:25�m

wavelength and was timed to reach the plasma 40ps

after the channel forming pulse

Figure 28: A sample interferogram Int4 taken in

similar conditions as Int4 but with the probe pulse

reaching the plasma at a later time with respect to

the channel forming pulse (60ps).

Figure 29: The phase-shift map (in 2� units) of the

not �ltered Int 3 image Fig. 27. CWT method
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Figure 30: The phase-shift map (in 2� units) of the

not �ltered Int 3 image Fig. 27. FFT method

Figure 31: The phase-shift map (in 2� units) of the

Median-�ltered (3� 3) + Wiener �ltered 5� 5 Int 3

image Fig. 27. CWT method

Figure 32: The phase-shift map (in 2� units) of the

Median-�ltered (3� 3) + Wiener �ltered 5� 5 Int 3

image Fig. 27. FFT method

Figure 33: The phase-shift map (in 2� units) of the of

the not �ltered Int4 image Fig. 28. CWT method
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Figure 34: The phase-shift map (in 2� units) of the

of the Median + Wiener 3�3 �ltered Int4 image Fig.

28. FFT method

results for FFT-b in interferograms Int 1, Int

4. For these images the application of quite

strong noise removal �lters no not considerably

improved FFT-b outputs. The interferogram

Int 2 FFT-b phase-shift maps seems to be more

accurate than the output of Int 1, but unphys-

ical phase jumps survive to phase-unwrapping

procedure. The FFT-b output of interferogram

Int 3 is accurate with both the un�ltered and

the �ltered images, but still noisy.

� (2) For all the four interferograms IACRE phase-

shift maps are satisfying and much less noisy

than the corresponding FFT-b outputs. With

the exception of the interferogram Int 1, no vis-

ible output improvement is obtained with the

prior application of denoising �lters to the in-

put images: for most of the images no denois-

ing is needed, thus saving morphological

informations from �ltering blurring and

other image deformations produced by

both linear and non-linear �ltering. This

is a very important characteristics of our

procedure, since it enables an accurate

search of small non-uniformity of the phase-

shift map which are important to detect

the growth of plasma instabilities as �la-

mentation and self-focusing.

4 The Integrated Laser-Plasma In-

terferogram Analyzer ILPIA soft-

ware

We describe now brie
y the software developed by

our group to analyze interferogram images obtained

in laser-plasma interaction experiments. It is an inte-

grated software packet running under the MATLAB5

environment consisting by a Graphical User Interface

(GUI) and several service routines from which it is

possible, starting from a digitized interferogram im-

age, to perform the following operations:

� 1. De�nition of a Region of Interest (ROI)

image;

� 2. Filtering of the ROI (Median �lter, Wiener

�lter, Background-removal �lter and other add-

on �lters);

� 3. Computation of the phase-shift map with

the FFT-b method;

� 3. Computation of the phase-shift map with

the IACRE method;

� 4. Reconstruction of the fringe pattern from

the phase-shift map (very useful tool in the

result-evaluation step);

� 5. Computation of the density map via the

Abel Inversion algorithm;

� 6. Standard tools for image-outputs storing.

In Fig. 35 it is shown the ILPIA GUI with a ROI in

the top image and a IACRE intermediate step (the

extraction of the CWT map for each z), while in Fig.

36 the GUI aspect of the density computation step,

that is the electronic plasma density computed from

the phase-shift via Abel Inversion, is shown.

5 Conclusions

In this note we have reported the results of a research

activity developed by the Laser-Plasma Interaction

group with the scope of:

� Improve the standard technique for interfero-

gram analysis;
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Figure 35: The Graphical User Interface. Top: ROI

of an interferogram image. Bottom: absolute value

of the CWT map at Z = 85 (phase-shift computation

step)

Figure 36: The Graphical User Interface. Top: Iso-

contour of the electronic plasma density. Bottom:

shaded surface map of the electronic plasma density.)

� Develop an integrated tool running under a PC

to analyze digitized interferogram images.

From the comparison between the older FFT-based

and the proposed IACRE methods outputs for four

typical interferograms, emerged that the new tool

is considerably more robust than the standard algo-

rithm, especially in analyzing strongly noisy images

or interferograms containing a relevant lowering of

fringe visibility.

The development of the integrated package ILPIA

constituted the second goal of the activity. Since the

package is 
exible and easily to upgrade, more eÆ-

cient noise �ltering routines will be added, and more

robust Ridge-extraction procedures will be tested.
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