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INTRODUCTION

Interferometric techniques can be used to measure the
electron density distribution of a plasma as well as its
temporal evolution. A fringe pattern is generated by an
interferometer which gives the phase shift induced on the
probe beam by the plasma and integrated along the line
of sight of the interferometer. With appropriate
assumptions on the symmetry of the plasma, Abel
inversion allows the density distribution to be obtained
from the phase shift distribution. A detailed
experimental investigation was performed® on long
scalelength plasmas produced from laser irradiation of
thin Al disks. A wide range of diagnostic techniques was
employed in order to characterise the plasma in terms of
electron density and temperature2. In particular, an
extensive analysis® of interferometric measurements has
been carried out using advanced techniques* based on the
Fourier analysis and the results are summarised here.

EXPERIMENTAL SET-UP

The long scalelength plasmas were produced at the SERC
Central Laser Facility using four 600 ps, 1.053 um
beams of the Vulcan laser, focused f/10 on a 400 um
diameter Al dot targets at an irradiance from
3 to 6x1013W/cm?2 on each side of the target. A 100 ps
(FWHM), 1.053 um beam of the Vulcan laser was
frequency doubled, delayed and used as a probe beam for
interferometric measurements in a line of view parallel to
the target plane. A Nomarski-like interferometer® was
employed in order to measure the plasma induced phase
shift at various delays relative to the peak of the heating
pulses. It was found that, under analogous experimental
conditions, interferograms were highly reproducible
shot by shot. Fig.1 shows a representative interferogram
taken 4.3 ns after the peak of the heating pulses.

INTERFEROMETRY: BASIC PRINCIPLES

The fringe pattern produced by the interferometer is the
result of interference between a beam which has
propagated through the plasma and an unperturbed
reference beam, both beams originating from the same
laser source. If the electron density n. is much smaller
than the critical density, n. at the probe wavelength,
one can assume that bending effects are negligible, that
is the probe beam propagates through the plasma in a
straight line. In this case the phase difference between
these two beams in a given position(x,z) of an output
plane of the interferometer perpendicular to the probe
beam is

L/2

(e(x,y,2)-1)dy (1)

-L/2

Ap(x,z) = %

where A, is the probe beam wavelength, € is the plasma

refractive index, L is the total path-length greater than
the plasma extent along y.

Fig.1. Interferogram of the preformed plasma taken 4.3 ns after
the peak of the heating laser pulses. The intensity on each side of
the target was 4.2x10!3 W/em2. The position of the target is
indicated by the arrows.

Considering that ne«nc, and assuming cylindrical
symmetry of the plasma around the axis perpendicular to
the target and passing through its centre, the phase shift
can be written in terms of the radial co-ordinate, i.e. the
distance from the symmetry axis

T
e2Ap | f ne(r) rdr
mec? . Nrz =22

Apx, (z) = - )

where the usual symbols have been adopted for the
electron mass and charge, and the speed of light. Eq.2 has
the typical form of the Abel integral equation and can
therefore be inverted to give

mec? 't JAp(x,z) dz
ne2lp A aZ .J;2 -— r2

which gives the radial distribution of the electron
density in terms of the phase shift induced by the
plasma, integrated along a direction perpendicular to the
symmetry axis. In order to detect this phase shift a small
angle is introduced by the interferometer between the
probe beam and the reference beam so that, in absence of
plasma, a pattern of parallel fringes is generated. The
phase shift introduced by the plasma is then evaluated by
measuring the displacement of the fringes from their
unperturbed position. By counting the number of fringes
crossed moving along z one can obtain a sampling of
Ag for a given distance from the target plane. This set

of data can be fitted and introduced in Eq.3 in order to
calculate the electron density. However this procedure,
typically used in the past, is subjected to a number of
uncertainties introduced by the small number of data
typically available to build A@ and by the particular
choice of the fitting function. Moreover, the sensitivity
of this technique is basically limited to one fringe shift
which, as will be clear later, would strongly limit the
effectiveness of the interferometric method itself,

(3)

ne(r,x) = —

.
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capable of a much better resolution. The use of the
Fourier transform method in the analysis of the
interferograms allows a much more direct approach to the
problem, free from the uncertainties evidenced above and
easy to implement with simple numerical techniques.

FOURIER TECHNIQUE

The intensity of the fringe pattern produced by the
interferometer on the output plane of the interferometer
in presence of plasma can be written as

I(x.z2) =a+bcos[2nfux + Ag] (4)

where a 1:1 plasma to image magnification has been
assumed. In this equation a(x,z) and H(x,z) account
for non-uniformities of the background intensity and
fringe visibility, fu is the spatial frequency of the
unperturbed fringe pattern, i.e. the number of fringes per
unit length on the output plane, A @(x,z) is the phase
shift induced by the plasma. It has been shown® that, by
means of the Fourier analysis, the intensity /(x,z) can
be processed in order to directly obtain the phase shift.
By expressing the cosine function in terms of the
exponential function Eq.4 becomes

I{(x.z)=a+[cexp(2rifux) + c.c.] (5

where c(x,z) = (1/2) b expli Ap] and its complex
conjugate ¢*(x,z) carry all the information relative to
A @. According to the definition of logarithm of a
complex number one can verify that

log c = log{(1/2)b] +iAgp. (6)

that is the phase shift can therefore be obtained taking
the imaginary part of the complex logarithm of ¢. On
the other hand, if we take the Fourier transform of Eq.5
with respect to x we obtain, for a fixed :

F(H) = Fa(f)+Fc(f—fu)+Fc.(f+fu) )

where Fu(f) is the Fourier transform of the background
intensity along x and F.(f —fu.) and FX{(f +f,) are
the Fournier transforms of the two terms containing A ¢.
If the scalelength of typical non-uniformities of the
background intensity along x is large compared to the
fringe frequency, then the contribution of F. to the total
Fourier spectrum of Eq.7 will result well separated by the
contribution due to the background intensity non-
uniformities. In this case F.(f — f.) can be extracted
from the spectrum, shifted by fu along the frequency
axis toward the origin, in order to obtain F,(f), and
inverse Fourier transformed to obtain c.

The interferogram of Fig.]l was digitised with the two

scanning directions set along x and z respectively. The
optical density of the film was converted into intensity
and stored in a two-dimensional array. A fast Fourier
transform (FFT) of the intensity distribution along the
direction perpendicular to the fringes, i.e. along x was
performed for each position along z. The three
components of the Fourier spectrum given by Eq.7 are
clearly visible in the image of Fig.2 where the modulus
of the Fourier transform of the interferogram of the
plasma of Fig.l, is shown as a grey-scale distribution.
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Fig.2. Fast Fourier transform of the intensity profile of the
interferogram of Fig.1. The natural logarithm of the modulus is
shown as a grey-scale image.

The two side components symmetric to the zero
frequency are relative to the fringe pattern while the
central, strong component accounts for the low spatial
frequency variations of the background intensity.

According to Eq.6, the imaginary part of the complex
logarithm of c¢(x,z) will finally give the phase
distribution A @(x,z) that is still locally indeterminate
by a factor of 27 resulting from the use of an inverse
trigonometric function to obtain the argument of
¢(x,z). However this indetermination can be solved by
setting an appropriate algorithm able to detect and
compensate jumps in the phase shift.

Fig.3 shows a 3D shaded surface of the phase shift
distribution generated by the preformed plasma 4.3 ns
after the peak of the heating pulses. According to Eq.3,
the phase distributions of Fig.3 can be inverted to
determine the electron density distribution.
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Fig.3. 3D shaded surface of the phase shift distribution obtained
from the interferogram of Fig.1 using a Fourier based technique
(see text).

The integral in the equation has been solved numerically
using a corrected composite trapezoid rule. Due to the
large amount of phase data points available, typically

X-spatial frequency
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512x512, the integral could be performed directly on the
data itself, without polynomial fitting. A contour piot
of the density profile obtained from Abel inversion of
the phase shift of Fig.3 is shown in Fig.4. The contour
levels are labelled in terms of the critical density at
1 um. Consistently with the assumption of cylindrical
symmetry, the Z-co-ordinate of Fig.3 has been replaced
by the radial co-ordinate.

SENSITIVITY TO DENSITY INHOMOGENEITIES

The analysis of interferograms with the Fourier technique
results in a substantial improvement of the sensitivity to
small scale non-uniformities in the density distribution.
The fringe shift recorded on film is the result of spatial
integration along the line of sight of the interferometer,
the sensitivity of our measurements to local density
inhomogeneities depends upon their scalelength as well
as their amplitude.
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Fig.4. Contour plot of the electron density profile of the plasma 4.3
ns after the peak of the heating pulses as obtained from Abel
inversion of the phase shift distribution of Fig.3. Contour levels are
labelled in terms of the critical density at 1.053um.
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According to Eq.2 the phase shift induced by the plasma
is linear with the density itself. The contribution of a
local density inhomogeneity to the total phase shift o0
has been evaluated assuming a density inhomogeneity
along the line of sight at a given position (Xo,2Z0) on
the output plane of the interferometer given by

Sne(X,y,2) = ANcqum EXP(—y2/W2)  (8)

where a is the amplitude of the density perturbation in
units of the critical density at 1 pm, Nc@ium and w is
the scalelength of the perturbation.

The phase shift 8¢ must be compared with the minimum
phase shift which can be experimentally detected. With
the use of the Fourier technique described here the
uncertainty in the phase shift arises from the
non-linearity in the response of the detector used to
record the interferogram. It has been shown in Ref.6 that
such non-linearity would give rise to high frequency
noise in the phase distribution. An estimate of the
importance of this effect can be made from the contour
plot of the phase shift of Fig.3 which is reported in
Fig.5. It shows that the contour curves are perturbed by a
high frequency noise. This effect leads to an uncertainty
typically of the order of 0.5rad that is less than one
tenth of a fringe separation.
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Fig.5. Contour plot of the phase shift distribution of Fig.3 with a
contour interval of 7, the uppermost curve corresponding to ¢=7.

Consequently, according to Egs.8, a single electron
density perturbation along the line of sight with a
scalelength of 20 um will be detected as long as the
corresponding amplitude of density fluctuation is greater
than 0.01nc@ipm. This limit becomes 0.025nc@ipm
for a 10 um scalelength perturbation.

Incidentally we observe that this procedure can also be
used to determine the lowest electron density which can
be detected for a given plasma extent along the line of
sight of the interferometer. Assuming a plasma extent of
the order of the target diameter, that is 400 um, the
uncertainty of 0.5rad on the phase distribution
mentioned above gives a lower limit to the detectable
density of = 10-3nc@ium which is consistent with the
measured limit given by Fig.4.

The sensitivity of the interferometric measurements to
small scale density non-uniformities is a fundamental
step for a correct interpretation of interaction
experiments. From the point of view of the
filamentation instability, for example, this study
indicates that perturbations in the bulk of the plasma in
the range of scalelengths of 10-20 um, are typically
characterised by One/ne < 0.2. The plasma studied
here can be therefore be considered substantially free
from density inhomogeneities which can efficiently
initiate the instability.
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