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A whole family of laser-plasma interaction experiments is based on the phase analysis of the
laser pulse after the propagation in a plasma. Typically, this phase is obtained by means of
interferometry. As pulsed interferometry is a much more difficult task than taking simple
images of the beam, we developed a numerical code for extracting phase information from
images. The technique, based on the algorithm of Gerchberg–Saxton, showed to be very ef-
fective in retrieving 2D phase distributions of simulated as well as real beams. The conver-
gence of the algorithm is fast~some minutes on a personal computer!. The electronic noise in
real images is intrinsically discarded by the algorithm.

1. Introduction

A typical concern of laser-plasma physicists is the observation of the phase of an interacting
or a probe laser pulse after the propagation in a plasma. The pulse spectral shift gives, for
instance, information about plasma density evolution in time~Le Blancet al.1993; Giulietti
et al.1994!. Fine techniques have been developed in the time domain in order to measure phase
differences between probe pulses with high phase resolution~Marquèset al. 1997!. The re-
trieval of the spatial phase distribution is usually performed by means of interferometry~Gizzi
et al. 1994; Borghesiet al. 1997!. This typically needs two identical laser pulses with initial
good optical quality, synchronization of pulses, and a wide angle imaging system for the in-
terference region. This technique demands, by far, a greater effort than taking simple photo-
graphs of the beam intensity distribution.

Optical phase retrieval from intensity distributions has been already tested on scattered light
in diffraction tomography experiments~Maleki & Devaney 1993!. We present a preliminary
study for the application of the numerical phase retrieving in the domain of laser interaction
physics.

2. Basic algorithm

Some phase retrieving algorithms have been proposed during the last years. The simplest
one is the so-called Gerchberg–Saxton~Gerchberg & Saxton 1972, Fienup 1982! algorithm.
The flux diagram in figure 1 shows the principle of this algorithm.

Two intensity distributionsI ~1! andI ~2! are known experimentally. The direct and inverse
propagation operatorsP andP21 transform the input fieldE1 into the outputE ~2! andvice-
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versa. An initial phase distributionf0 is guessed to build the candidate input complex fieldE1'

up. Then the corresponding output fieldE ~2! is worked out, and its amplitude distribution
replaced by the experimental one%I ~2!. The loop is closed by propagating the new output field
E ~2!' backwards and setting the amplitude of the input fieldE1' equal to the experimental one.

As a general rule, the phase retrieving algorithms are based upon the minimization of the
functional error~Ivanovet al.1992!
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Although the Gerchberg–Saxton algorithm does not require to compute any functional gra-
dient, it can be shown that, in the vicinity of the solution, it converges with the same speed as
the traditional steepest gradient algorithm~Ivanovet al.1992!. Yet, compared to the explicit
calculation of the functional gradient of the errorZJ, the Gerchberg–Saxton algorithm has the
advantage of simplicity and of a minimum number of computations per step. In a similar but
simplest context~1D!, the same algorithm has been successfully applied for the frequency
resolved optical gating~FROG! time phase control of short laser pulses~Trebino & Kane
1993!. We have then chosen to implement the Gerchberg–Saxton algorithm and to test it with
typical 2D phase retrieving problems.

In order to compare test results with a known phase distribution, we choose to retrieve the
phase imprinted on a focused beam by a random phase plate~RPP! ~Kato et al.1984; Pepler
et al.1993!. This is an optically flat plate divided into square cells, a random selection of which
is coated with a thin dielectric layer. By controlling the thickness of the layer, one can introduce
a wanted optical path difference between the coated and the uncoated cells. Tests will be
presented here, where the pattern and the phase step of the RPP are retrieved from the images
of simulated as well as real He-Ne laser beams.

3. Phase retrieving from two images

For the first test we take two images of a simulated Gaussian beam passing through a
positive lens and a RPP located in the same plane. The beam wavelength and intensity
FWHM diameter on the lens arel 5 1.064mm anddbeam5 2.35 cm respectively, and its
input phase is set flat. The focal length isf 5 24 cm, and the RPP phase step and cell size
areDf 5 p andscell 5 1 cm respectively. The two pictures shown in figure 2 are taken at the
RPP plane and at the focal plane of the lens respectively. The resolutions of the two images
aredx1 5 880 mm anddx2 5 0.57mm respectively.

In this case, the algorithm falls into numerical stagnation~Fienup & Wackerman 1986! and
the RPP shape can not be retrieved even after thousands of iterations~figure 3!. This is a typical
behavior of algorithms solving the phase retrieval problem from two images~Ivanov et al.

Figure 1. Flux diagram of the Gerchberg–Saxton algorithm.I ~1! and I ~2! are the measured intensity
distributions,E ~1! andE ~2! are the corresponding fields,P andP21 are the direct and inverse propagation
operators andf0 is the guessed phase at the input plane.
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1992!. As a matter of fact, this problem has in general an infinite number of solutions. An
example of multiple solution follows.

Let’s consider an incoming beam with a Gaussian intensity distribution and a flat phase
focused by an astigmatic lens of main focal lengthsf1 and f2. In this case, we can write the
complex field after the lens as

Figure 2. Simulated test images of a laser beam~l 51.064mm! focused by a positive lens~ f 5 24 cm!
through a random phase plate~RPP!. ~a!—beam intensity just after the plane where the focusing lens and
the RPP lie;~b!—beam intensity at the focal plane of the lens. Reference bar length:lbar51 cm, for~a!;
lbar5 100mm, for ~b!.
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wherew2 is the variance of the 2D amplitude distribution at the lens and the coordinate system
has been chosen in order to match the lens axes.

a

Figure 3. ~a!—RPP pattern;~b!—retrieved phase at the plane of the RPP after 5000 iterations.~a!—
cell sizes5 1 cm; phase stepDf 5 p. ~b!—gray-map@2p,p# r @white,black# ; reference bar length
lbar 5 1 cm. Phase is retrieved close to the beam axis, where the amplitude of the field exceeds the
numerical noise of the calculation. The retrieved phase in~b! does not contain the parabolic phase of
the lens.
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It is known that the propagation of a beam can be worked out by the paraxial development
of the Kirchhoff integral, giving

E~x, y,z! 5

k expSik
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So, when the beam field formula is put into the integral, variables get separated and we can
write
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Whenf1 5 f2 5 f, this gives the usual Gaussian beam propagation. Taking the astigmatism into
account, a beam is defined whose amplitude distributions along thex andy directions respec-
tively are Gaussian everywhere, with a line focus in they direction close to the positionz5 f1
~if kw2 ,, 2f1! and an other inx direction at aboutz5 f2 ~if kw2 ,, 2f2!. In the region between
the linear foci, the standard deviationswx~z!0#2 andwy~z!0#2 of the two transverse amplitude
distributions grow in opposite senses. So, at position

zf 5 2
f1 f2

f1 1 f2
, ~5!

between the two line foci, it is found thatwx 5 wy. Like at the lens plane, the overall field am-
plitude distribution forz5 zf comes out to be a Gaussian function of the radiusr 5%x2 1 y2.

Let’s now consider the problem of retrieving the phase of a Gaussian beam by the images of
two planes at a distancez. Let the standard deviation of the amplitude distributions be at these
positionsw10#2 andw20#2 respectively. From the above discussion, it comes out that the two
images are then consistent with an astigmatic beam coming from a lens of main focal lengths
f1 andf2, as given by equation~6!.

Figure 4. Flux diagram for three test images. Index~1!, ~2!, and~3! mark the input, intermediate and
output plane respectively.P12, P23, andP13

21 are the operators of propagation from the input to the inter-
mediate plane, from the intermediate to the output plane, and from the output backwards to the input plane
respectively. The initial phasef0 is guessed at the input plane.
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Figure 5. ~a!—beam intensity 200mm before the focal plane of the lens, for the same beam as in
figure 2; ~b!—retrieved phase at the plane of the RPP.~a!—reference bar lengthlbar 5 100mm. ~b!—
reference bar lengthlbar51 cm, gray-map@2p,p# r @white,black# . The retrieved phase in~b! does not
contain the parabolic phase of the lens. A phase stepDfretr5 p~1610256! between the squared cells is
retrieved from~b!.
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This solution exists for any choice ofw1 andw2 provided that they are consistent with the
diffraction limit. It defines an infinite family of astigmatic beams that, regardless of the cyl-
inder axis, match the same two images taken along the propagation of a Gaussian beam. We
conclude that the problem of the retrieving phase from two images has, in general, degenerated
solutions that prevent the phase-retrieving algorithm from converging. Some supplemental
information must then be added to the two images.

Figure 6. Input and retrieved phase distributions at the plane of the RPP.~a!—input phase distribution;
~b!—retrieved phase distribution. Reference bar lengths:lbar 5 1 cm. Gray-map:@2p,p# r @white,
black# . The phase distributions do not contain the parabolic phase of the lens.

Phase measurements without interferometry 687



4. Phase retrieving from more than two images

The following step consists of taking more than two images. The flux diagram must then be
modified like in figure 4 where a third fieldE ~3! has been introduced in the loop and the
propagation operatorsP andP21 have been replaced by the partial propagation operatorsP12,

Figure 7. Experimental test images of a laser beam~l 5 0.633mm! focused by a lens~ f 5 80 cm!
through a RPP.~a!—beam intensity distribution just after the plane of the RPP;~b!—beam intensity
distribution 2.45 cm before the focal plane of the lens;~c!—beam intensity distribution at the focal plane
of the lens. Reference bar length:lbar5 0.5 cm~a!; lbar5 500mm for figures~b! and~c!. Distance from
the phase plate:z1 5 0 for figure ~a!; z2 5 75.05 cm for figure~b!; z2 5 77.5 cm for figure~c!. ~Figure
continues on facing page.!
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P23 andP13
21. In Figure 5~a!, a simulated intensity distribution is shown, corresponding to an

intermediate plane in the propagation of the beam of figure 2. The distance from the phase plate
is in this casez3 5 23.98 cm, corresponding to a plane located 200mm before the focal plane
of the lens. The spatial resolution is the same as for figure 2b,dx3 5 0.57mm. The retrieved
phase at the plane of the plate is shown in figure 5b. This is a gray-map representation of the
total retrieved phase distribution at the plane of the first test image, from which the parabolic
phase of the lens has been subtracted. It can then be directly compared to the RPP pattern in
figure 3a.

The supplemental information supplied by Figure 5a allows us to retrieve the RPP pattern
and the phase step, within an accuracy that is limited only by the graphic representation. The
phase discontinuities are also retrieved, with a spatial resolution corresponding to the sampling
step of the intensity.

In order to test the algorithm with a more difficult problem, we imprinted the phase of the
same RPP as in figure 3 on a beam suffering from an intrinsic strong aberration. This is sim-
ulated by a smooth transverse phase distribution whose selfcorrelation diameter and standard
deviation are equal toscorr51 cm andsf 5 p respectively. Such parameters have been chosen
in order to match the RPP cell sizescell 51 cm and phase stepDf 5 p. As a consequence, the
spreading effect of the phase aberration on the beam propagation is comparable with that of the
phase plate. As shown in figure 6a, the total phase of the input beam is the sum of this smooth
aberration with the discrete RPP pattern. The code has in this order to retrieve a phase distri-
bution with values in the interval@0,2p# and step discontinuities.

Three images are taken at the same positions as above, and for the same focal length and
beam diameter. From these images a phase is retrieved as shown in Figure 6b. By comparing
Fig. 6a with Fig. 6b, one can immediately verify that the total phase distribution has been
retrieved.

The phase resolution of the algorithm has been checked with the same Gaussian beam as for
figures 2 and 5 and with the RPP pattern shown in figure 3a. This time the RPP phase stepDf
has been varied. With simulated input images, phase steps lower thanDf 5 2p0100 have been
successfully retrieved. On the other hand, our simulated images were defined with an unreal-

Figure 7. ~Continued.!
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istically large dynamic range. Images coming from CCD cameras are typically recorded within
a dynamic range of 256 levels, for conventional linear CCDs~8-bit!, or 16,384 levels, for
typical cooled CCDs~14-bit!. When a smallDf is imposed, the total wave can be thought as the
superposition of two beams. The first beam represents the 0th order of diffraction, carries the
most power, and is focused within the diffraction limit. The second beam contains the higher
orders of diffraction, has low power and is spread out by diffraction. As a consequence, when
the level ratio of the two beams falls out of the dynamic range of the imaging system, the effect

Figure 8. ~a!—RPP scattered light image;~b!—retrieved phase at the plane of the RPP.~a!—cell
size s 5 0.1 cm; phase stepDf 5 2.0. ~b!—reference bar lengthlbar 5 5 cm; gray-map@2p,p# r
@white,black# . The retrieved phase in~b! does not contain the parabolic phase of the lens. A phase step
Dfretr 5 1.96 0.27 is retrieved from~b!.
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of the phase perturbation is intrinsically neglected. With the given beam and phase plate, the
simulations revealed a phase resolutiondf52p05 for 8-bit CCD cameras anddf52p040 for
14-bit ones.

5. Experimental test of phase retrieving

An experimental test of this technique has been performed. The experimental scheme is the
same as for the previous simulated tests. A He-Ne laser beam~l 5 633 nm! is spatially filtered
before the focusing lens in order to remove intrinsic phase aberrations. Then a circular iris
tailors a steep edged, flat top portion of the intensity distribution with diameterdin 5 2 cm. The
beam is focused with af 580-cm lens and passes through a RPP, whose cell size and phase step
arescell 5 0.1 cm andDf 5 2.0 respectively. With an 8-bit CCD digitized camera, we took the
three images of the beam that are shown in figure 7. With respect to the RPP plane, the positions
of the imaged planes arez15 0,z25 77.5 cm andz35 79.95 cm. A scattered light image of the
RPP is shown in Figure 8a, and can be compared to the retrieved phase in figure 8b. The RPP
pattern is retrieved by the code with smooth edges and with a phase stepDfr 5 1.96 0.27.

Several reasons can explain the less accurate agreement between the input and the retrieved
phase for this experimental test, when compared to the simulated test. Among the intrinsic
problems of the technique, one must cite the electronic noise of the CCD camera and the lack
of an absolute alignment of the three images. In this case, the noise affects the lowest ten levels
of the CCD output and is partially reduced by averaging over three samples. The alignment of
the centers of mass of the intensity distributions of the three images has been performed nu-
merically and thus suffers from the residual electronic noise. Finally, a very accurate calibra-
tion of the CCD response has been necessary. Since more experimental problems affect this
example, like beam doubling by double reflection in the protective glass of the CCD, we can
state that simple improvements will give even better results in further experiments.

Nonetheless, due to the redundant information carried by three images, the code could dis-
card the noise and effectively retrieve the complex field of the beam. Improved results can be
obtained by comparing four images or more.

6. Conclusion

We tested a code employing the Gerchberg–Saxton algorithm as a phase retrieving tech-
nique from images. In a test situation, where a phase plate is put on a laser beam in the near-
field region, we could retrieve the phase distribution of the plate with excellent agreement.
With a typical imaging system dynamic range~14 bits!, runs of the code on simulated images
showed high phase resolution~p040!. The experimental implementation of the technique has
begun with very good results. Practical problems have been pointed out in image alignment,
noise reduction, and CCD camera calibration. With a much reduced experimental work, this
technique can give as accurate results as interferometry. We plan to apply numerical phase
retrieving to the study of short laser pulse propagation in plasmas.
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