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Abstract. The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with 

eXcellence In Applications) is producing a conceptual design report for a highly compact and 

cost-effective European facility with multi-GeV electron beams accelerated using plasmas. 

EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, 

one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on 

laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-

electron laser pilot experiments, positron generation and acceleration, compact radiation sources, 

and test beams for high-energy physics detector development. Support centres in four different 

countries will complement the pan-European implementation of this infrastructure. 

1.  Introduction 

Since its first experimental successes more than a decade ago [1-3], plasma wakefield acceleration has 

in recent years drawn more and more interest in the accelerator community, as significant performance 

improvements and technological milestones were achieved [4-11]. Taking advantage of the extremely 

strong wakefields inside a plasma accelerator, these machines can accelerate electron beams created 

through internal injection or injected externally from another machine to hundreds of MeV up to several 

GeV over mm- to cm-lengths. With such a reduction in accelerating distance by up to three orders of 

magnitude compared to radiofrequency (RF)-based devices, plasma technology is very promising for 

miniaturizing accelerator-based machines, such as light sources, thus potentially opening up a multitude 

of new applications and fields of use. To advance the development of plasma accelerators towards 

applications and user readiness, the EuPRAXIA project [12] aims to tackle some of the field's most 

challenging technical and operational issues, including beam quality, machine reliability and operability 

as well as the currently very low repetition rate of plasma-based devices. With a team of 41 partners 

from 14 countries (as of November 2018 [13]), the project aims to develop a first plasma-accelerator-

based user facility. It is foreseen as a distributed European demonstrator and Open Innovation platform 

dedicated to the research and development of accelerator concepts and applications of plasma wakefield 

acceleration. This paper provides a short summary of the general status of the project as well as the 

current considerations for the future EuPRAXIA infrastructure. 

2.  Project status and schedule 

As part of the conceptual design, the main technical and scientific goals for the future EuPRAXIA 

machine have been defined. Their status can be summarized as follows: 

• Single- & multi-stage acceleration of electron beams to a final energy of 1-5 GeV:  

A broad range of plasma injection and acceleration mechanisms has been studied, assessed and down-

selected, as described in detail in [14]. The expected final beam parameters found from start-to-end 

simulations of the accelerator are summarized in Table 1. As can be seen from Figure 1 for the critical 

parameters of electron beam slice energy spread and emittance, the specifications fulfil the goal of high 

beam quality approaching typical parameters of modern, RF-based free-electron lasers (FELs). 

Additionally, various more practical issues have been considered for the machine design. Emphasis has 

been placed on topics specific to plasma acceleration, such as the synchronization between drive laser 

and externally injected witness beams, laser in- and outcoupling as well as electron beam dechirping. 
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Conceptual solutions for these have been developed and will be tested and optimized in the coming 

technical design phase [15-18]. 

 

Table 1: Expected machine performance based on start-to-end simulations of the conceptual design. 

Parameter Baseline 

Energy [GeV] 1.0 – 5.5  

Charge [pC] 20 – 35  

Bunch length [fs] 4 – 12  

Energy spread [%] 0.1 – 1.1  

Slice energy spread [%] 0.02 – 0.15  

Norm. transverse emittance [mm mrad] 0.35 – 1.50  

Norm. slice emittance [mm mrad] 0.10 – 1.20  

Specific acceleration scheme results described in [14] 

 

  

Figure 1: Comparison of electron beam parameters expected for different EuPRAXIA setups with the 

design and measured performance of several RF-based free-electron laser facilities [19-24]. 

• Design of a highly compact machine layout: 

As discussed in [25], the current machine design is estimated to have a maximum length of around 

175 m, including acceleration to 5 GeV and an FEL beamline. This demonstrates a reduction in size by 

a factor of approximately four compared to equivalent, conventional machines [26]. A focus has been 

put on developing transport lines and diagnostics suitable for a compact machine based on plasma 

technology. In both cases, a risk-mitigated strategy was chosen by combining conventional, well-tested 

techniques with larger footprints (such as quadrupole-based focusing and emittance scans) with novel, 

more compact methods better suited to plasma-accelerated beam characteristics (such as plasma lenses 

and single-shot betatron / transition radiation diagnostics) [27-30]. Through a stepwise replacement of 

the more sizable components together with other measures, a further miniaturization of the machine 

towards a factor of 10 and beyond throughout its lifetime is intended. 
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• Development & construction of a new generation of high-power, short-pulse laser systems: 

The current facility layout foresees three new laser systems with sub-PW to PW peak power to be 

developed as plasma wake drivers (see [31] for details). The design is focused on high stability and a 

high repetition rate of 20-100 Hz with ambitions to explore the kHz regime as a possible future 

development [32, 33]. Such a move to higher repetition rates will not only make plasma accelerators 

more competitive with RF-based machines, but also allow the implementation of more complex 

feedback mechanisms thus improving the overall pulse-to-pulse stability. 

• Development & construction of a new compact beam driver based on X-band RF technology: 

A design for an X-band linac with energies up to 0.5-1 GeV for EuPRAXIA’s beam-driven plasma 

acceleration site has been devised [34]. It will provide both the drive and witness beams for the PWFA 

stages of the beamline using a compact, high-acceleration gradient RF setup. 

• Design of several distributed and versatile user areas for a broad range of applications: 

The most promising exemplary applications have been identified [35-37] and, based on these, beamlines 

as well as user areas are being designed. With the concept of massive parallelization of user lines in 

mind as a key advantage of LWFA, the baseline foresees plasma FELs, high- and low-energy positron 

sources for high-energy physics and material science applications, compact test beams for particle 

physics detector design as well as X-ray & γ-ray sources for imaging and other uses. Some of the main 

advantages intrinsic to plasma acceleration in this context are the naturally short pulse lengths of few fs, 

µm-scale source sizes as well as the high synchronization level between particle and laser beams suitable 

for pump-probe experiments. 

Following a full conceptual design based on these different aspects to be presented in October 2019, 

a six-year technical design phase for prototyping and R&D is foreseen, as shown in Figure 2. An 

implementation of the EuPRAXIA infrastructure could then be envisaged within a 10-year time frame, 

subject to funding and based on a phased implementation approach. 

 

 

Figure 2: Preliminary EuPRAXIA schedule and project phases. 

 

3.  An Open Innovation platform 

The future EuPRAXIA platform is designed as a distributed research infrastructure across six countries, 

with two construction sites and four support centres distributed in several European countries [25]. The 

facility’s two construction sites are dedicated to user operation, each exhibiting 2-3 beamlines generating 

high-quality electron bunches and secondary photon & particle beams. For the four support sites the 

focus lies on internal R&D. Based on existing infrastructures, they will be set up to prototype and mature 

the new technologies designed for EuPRAXIA. They will also act as continuous test beds for future 

developments and components, as the user machine sites implement upgrades throughout their 

operational phase.  

Considering both the future potential of plasma acceleration to open up new applications and markets 

as a complementary technology to RF machines, and the vision of EuPRAXIA as a facilitating platform 

in this development, a facility model based on Open Innovation is considered a very suitable strategy. 

Figure 3 summarizes what EuPRAXIA's Open Innovation model could effectively look like. Beyond a 

strong exchange of expertise within EuPRAXIA, its interactions with external partners and users – here 

defined as three main groups [35] – are essential. EuPRAXIA could bring together these types of users 

traditionally at different points along a product development chain, from students as future researchers 
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to co-developers to beam / end users of the same technology. Thus, a unique environment could be 

created where knowledge, perspectives and interests can be exchanged through direct means, such as 

user workshops, and more indirect ones, such as the shared use of beamlines and facilities. The 

involvement of industry as users, co-developers and suppliers would play an essential role in this context 

as a more direct path for the science at EuPRAXIA to reach innovation and commercialization. 

 

 

Figure 3: Overview diagram of a possible Open Innovation model for EuPRAXIA. 

4.  Summary 

In conclusion, the key technical and scientific goals of EuPRAXIA have been developed with the 

conceptual results showing clear R&D strategies and problem-solving approaches. The EuPRAXIA 

facility concept foresees a distributed infrastructure of two construction and four support sites across 

Europe. It is proposed to adopt an Open Innovation framework with a conscious user definition and 

strong industry involvement as a most effective long-term path towards advancing plasma accelerator 

technology from user readiness to novel applications and markets. A more detailed and completed 

version of the EuPRAXIA machine and facility design will be published in October 2019 in the form of 

a conceptual design report. 
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