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ABSTRACT The process of Thomson scattering of an ultra-
intense laser pulse by a relativistic electron bunch has been
proposed as a way to obtain a bright source of short, tunable
and quasi-monochromatic X-ray pulses. The real applicability
of such a method depends crucially on the electron-beam qual-
ity, the angular and energetic distributions playing a relevant
role. In this paper we present the computation of the Thomson-
scattered radiation generated by a plane-wave, linearly po-
larized and flat-top laser pulse, incident on a counterprop-
agating electron bunch having a sizable angular divergence
and a generic energy distribution. Both linear and nonlinear
Thomson-scattering regimes are considered and the impact of
the rising front of the pulse on the scattered-radiation distri-
bution has been taken into account. Simplified relations valid
for long laser pulses and small values of both scattering angle
and bunch divergence are also reported. Finally, we apply the
results to the cases of backscattering with electron bunches
typically produced with both standard radio-frequency-based
accelerators and laser–plasma accelerators.

PACS 13.60.Fz; 41.60.-m; 41.75.Jv

1 Introduction

Thomson scattering from free electrons is a pure
electrodynamical process in which each particle radiates while
interacting with an electromagnetic wave. From the quantum-
mechanical point of view Thomson scattering is a limiting
case of the process of emission of a photon by an electron ab-
sorbing one or more photons from an external field (see e.g. [1]
and references therein), in which the energy of the scattered
radiation is negligible with respect to the electron’s energy. If
the particle absorbs only one photon from the field (the linear
or nonrelativistic quivering regime), Thomson scattering is
the limit of Compton scattering in which the wavelength λX

of the scattered photon observed in the particle’s rest frame is
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much larger than the Compton wavelength λc = h/mec of the
electron [2]. Since λc/λX � 1, the Thomson-scattering pro-
cess can be fully described within classical electrodynamics
both in the linear and the nonlinear (i.e. when the electron
absorbs more than one photon) regimes.

Thomson scattering of a laser pulse by energetic counter-
propagating electrons has been proposed since 1963 [3–5] as a
quasi-monochromatic and polarized photon source. With the
development of ultra-intense chirped and pulsed amplification
(CPA) laser systems [6], the interest in this process dramat-
ically renewed. The Thomson-scattering process of photons
of ultra-intense laser pulses onto relativistic electron bunches
can be employed as a bright source of energetic photons from
UV to γ rays [7–9], an attosecond source in the full nonlinear
regime [10], powerful diagnostics on the bunch itself [11–14]
and a bunch cooler [15].

Recent experimental investigations [16–20] performed
in the linear regime confirmed the production of a high-
brightness X-ray flux in 90◦ and 180◦ collisions between CPA
laser pulses and ultra-relativistic bunches; several proposals
for direct medical applications of these sources have been
presented [21–24].

The four main parameters of the Thomson-scattering pro-
cess of a pulse by a free electron are the particle energy
E0 = γ0mec2, the laser pulse peak normalized amplitude

a0 ≡ e2 A/(mec2) = 8.5 × 10−10
√

Iλ2
0, I being the peak in-

tensity in W/cm2 and λ0 the wavelength in µm, the pulse
longitudinal envelope rise time TR and the angle αL between
the propagation directions of the pulse and the electron. The
pulse amplitude a0 controls the momentum transferred from
the laser pulse to the electron, i.e. the number of photons of
the pulse absorbed by the electron. If a0 � 1, only one photon
is absorbed and the resulting electron motion always admits
a reference frame in which the quivering is nonrelativistic
(linear Thomson scattering). For an electron initially moving
with γ0 � 1 and a pulse having an adiabatic rising front (i.e.
with a rise time TR much greater than the pulse period λ0/c),
the resulting scattered radiation is spectrally shifted at a peak
wavelength λX � λ0/(2γ 2

0 (1 − cos αL)) and emitted forward
with respect to the electron initial motion within a cone of
aperture ≈ 1/γ0.
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In the nonlinear regime (a0 ≈ 1 or higher) the resulting
strong exchange between the laser pulse and the particle mo-
mentum induces a complex and relativistic electron motion,
consisting of a drift and a quivering having both longitudinal
and transverse components with respect to the pulse propaga-
tion. In turn, the time-dependent longitudinal drifting results
in a nonharmonic electron motion, thus producing scattered
radiation with a complex spectral distribution too. If the elec-
tron interacts with a laser pulse with constant amplitude, the
spectral distribution of the scattered radiation is organized
in equally spaced harmonics. This appealing feature requires
at least that the laser pulse must be temporally ‘shaped’ in
a flat-top way. Pulse-shaping techniques are becoming more
common, especially for the production of ultra-short and low-
emittance electron bunches with radio-frequency (RF) guns
[25]. Moreover, the shaping of the laser pulse enables the oc-
currence of a quite subtle mechanism, which has been recently
pointed out by He, Lau, Umstadter, Kowalczyk and Strickler.
The authors of [26–28] showed that, for a pulse having a
sharp flat-top envelope (cTR/λ0 → 0), the value of the phase
of the electric field at the rising front plays a relevant role
for the particle dynamics and thus for the scattered-radiation
distribution.

In this paper we develop an analytical estimation of the
distribution of the photons radiated by Thomson scattering in
both linear and nonlinear regimes by a free electron moving
against a linearly polarized laser pulse. Several simplified
expressions which are valid for the cases of small scattering
angles or long pulses are also reported. We consider both
the cases of sharp flat-top (cTR/λ0 → 0) and smooth flat-
top (1 < cTR/λ0 � T/λ0) pulses, by taking into account the
effect of the pulse rising front accordingly. Moreover, unlike
the work of Esarey et al. [7], in our formalism the electrons
need not experience perfect head-on collisions with the laser
pulse photons but they can have an incidence angle small
enough to enable the transverse ponderomotive forces to be
neglected and large enough to produce a sizable effect on the
scattered distribution itself. We stress also that the formula
for the radiated distribution we report here differs from that
proposed by Ride et al. [29] in two respects: (i) ours takes into
account the effects of the rising front of the pulse and (ii) it can
be directly applied to the estimation of the scattered-radiation
distribution by an electron bunch, e.g. by means of a Monte
Carlo computation.

The paper is organized as follows. In Sect. 2 Thomson
(quasi) backscattering by a single electron will be considered
and an exact analytical expression of the scattered-radiation
distribution for the case of a linearly polarized, flat-top and
radially homogeneous laser pulse is deduced. Several simpli-
fied relations which are valid for the cases of long pulse and
small scattering and incidence angles, and both long pulse and
small angles, are also reported. The case of linear Thomson
scattering will also be discussed and the validity of the ap-
proximations of negligible effects of the transverse pondero-
motive forces for the realistic case of a Gaussian transverse
profile will be clearly stated. In Sect. 3 we deal with Thomson
backscattering by an electron bunch presenting sizable angular
divergence and arbitrary energy distribution. Both collective
and coherence effects are neglected. For the linear-regime case
and the case of ultra-relativistic electrons and small scatter-

ing and incidence angles, we compare the expression for the
scattered-radiation distribution to the simple relation found
in the literature [8]. Next, we specialize to the production of
energetic and quasi-monochromatic photons and we system-
atically study the effect of the beam angular divergence on the
spectrum of the scattered radiation in both the linear and the
nonlinear regimes. Section 4 is devoted to comments.

2 Single-electron scattering for a linearly polarized
flat-top pulse

2.1 The vector potential for a flat-top-shaped pulse

Let us consider a plane-wave laser pulse linearly
polarized along the y axis propagating along the −z direc-
tion, having wavelength λ0, duration T and transverse size of
waist w0. The pulse electric field is parameterized as �E(z, t) =
E0 ŷ H (ξ ) sin(ω0ξ + φ0), where ξ ≡ t + z/c, ω0 = 2πc/λ0 is
the laser pulsation, E0 is the pulse amplitude, H (ξ ) is a flat-
top longitudinal profile (see Fig. 1) and φ0 is the phase of
the electromagnetic wave at the rising front located at ξ = 0.
We introduce the adimensionalized vector potential of the
laser pulse �a ≡ (e2/mec2) �A, which in the Coulomb gauge
( �∇ · �a = 0) can be parameterized as

�a(z, t) ≡ ŷa(ξ ) = −ŷa0ω0

∫ t

−∞
dτ H (τ + z/c)

× sin(ω0(τ + z/c) + φ0). (1)

The longitudinal envelope for the sharp flat-top case (i.e.
with rising time scale TR � λ0/c) is H (x) = 	(x) − 	(x −
T ), 	(x) being the Heaviside step function. For this case the
pulse vector potential is easily computed with Eq. (1), giving

a(ξ ) = a0 H (ξ )(cos(ω0ξ + φ0) − cos(φ0)) [sharp profile].

FIGURE 1 a Geometry of Thomson backscattering. The laser pulse is po-
larized along y and moves towards negative z′s. Each electron moves roughly
along positive z′s with initial momentum mec�u0. The scattered radiation is
collected along the direction �n with angles (θ, φ). b Longitudinal envelope
profile of the pulse for both the sharp flat-top and the smooth flat-top cases
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FIGURE 2 a Time shape of the pulse rising front
H (ξ ) = sin(πξ/2TR) for the case LR = 15 fs. b Initial
phase dependence of the mean potential ā(φ0) for some
values of the rising time scales. c Dependence of the max-
imum of ā(φ0) on the rising time scale

We immediately note that for this sharp limiting case
the mean value over a pulse cycle of the vector potential
ā = −a0 cos(φ0) is generally not null, so that the initial phase
plays a relevant role in the particle dynamics as stated in
[26–28]. The sharp flat-top profile, however, is to date far
from being really obtained and for present-time applications
the most realistic case of a smooth flat-top profile should
be considered instead. The smooth flat-top profile has rising
and falling fronts having scales cTR larger than the pulse
wavelength λ0 and much smaller than the pulse duration
T (see Fig. 1b). The integration of Eq. (1) for a smooth
longitudinal profile brings us generally to a vector potential
having a complex analytical description. Such a detailed
description, however, is not necessary since TR/T � 1 and
thus the scattered radiation emission during the rising (and
falling) front is negligible with respect to that of the plateau.
Nevertheless, the value of the ratio cTR/λ0 plays a key role in
determining the dynamics of the particle in the plateau region
(H (ξ ) = 1 for ξ ≥ TR), since the mean value of the vector
potential in the plateau ā (and thus that of the transverse
particle momentum, as will be clear below) depends on the
rising front shape. In order to better highlight this, let us write
the value of the vector potential in the plateau region as

a(ξ ) = a0 cos(ω0ξ + φ0) + ā, (2)

where

ā = −a0

[
cos(ω0TR + φ0) + ω0

∫ TR

0
dτ H (τ ) sin(ω0τ + φ0)

]

(3)

and where we have supposed that H (0) = 0 and H (ξ ) = 1 for
ξ ≥ TR. The mean potential ā is an oscillating function of the
initial phase φ0 with period 2π . Note that if H is a regular func-
tion also in the interval 0 < ξ < TR with cTR � λ0, the ampli-
tude of ā(φ0) can be estimated by making an iterative integra-
tion by parts of Eq. (3), obtaining a series of terms proportional

to ∂n H/∂ξ n computed in both ξ = 0 and ξ = T . As a result,
for λ0/(cTR) � 1, ā is roughly of the order O(a0[λ0/(cTR)]n)
with n ≥ 1. As an example, we consider the case of a rising
front of the shape H (ξ ) = sin2(πξ/(2TR)) for 0 ≤ ξ ≤ TR.
In Fig. 2a the shape of H (ξ ) for the case TR = 15 fs and
λ0 = 1 µm is shown. We computed the initial phase depen-
dence of ā for several values of the rising front time scale TR,
obtaining the curves reported in Fig. 2b. Finally, in Fig. 2c
the dependence of the maximum of ā(φ0) on the rising time
scale is reported, confirming that ā/a0 = O(λ0/cTR)2.

2.2 Single-particle dynamics in the pulse
plateau region

In the following we will describe the dynamics of
the particles in the plateau region. This will be accomplished
by taking into account the mean value ā of the vector potential.
Let us introduce the normalized electron momentum �u(t) =
�p(t)/mc = γ (t)�β(t), γ being the relativistic Lorentz factor,
and the initial normalized momentum �u0 = �p0/mc = γ0 �β0.
Since space-charge forces are neglected, the Lagrangian of
each electron can be written as

L = −
√

1 − �β2(t) − �β(t) · �a(z(t), t) (4)

and the invariance of the Lagrangian (4) under transla-
tions orthogonal to z generates two conservation rules for
the transverse component of the generalized momentum
�P(t) ≡ �u + �a. Moreover, the total time derivative of the
Hamiltonian H ≡ �P · �β − L is linked to the partial time
derivative of the Lagrangian: dH/dt = −∂L/∂t . As a result,
the time and space invariance properties of L generate three
conservation laws, by which the time evolution of the particle
momentum can be inferred:

d

dt
ux = 0,

d

dt
(uy − a) = 0,

d

dt
(γ + uz) = 0, (5)
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where γ (t) = (1 + �u2(t))1/2 is the Lorentz factor of the
particle. Let us consider a particle with initial momentum
�u0 = (ux0, uy0, uz0). The solution of Eq. (5) is (see also [7]
for the special case of ux0 = uy0 + ā = 0)

ux = ux0, uy = uy0 + a, uz + γ = h0, (6)

where h0 ≡ γ0 + uz0, �u2
⊥ ≡ u2

x + u2
y = u2

x0 + (uy0 + a)2 and
γ = (h2

0 + 1 + �u2
⊥)/2h0. In the plateau region the mean value

over a pulse cycle of the particle momentum reads

ūx = ux0, ūy = (uy0 + ā),
(7)

ūz = [
h2

0 − (
1 + u2

x0 + (uy0 + ā)2 + a2
0

/
2
)] /

(2h0),

so that the longitudinal particle speed in the plateau βL
z =

ūz/γ̄ is

βL
z =

[
h2

0 − (
1 + u2

x0 + (uy0 + ā)2 + a2
0

/
2
)]

[
h2

0 + (
1 + u2

x0 + (uy0 + ā)2 + a2
0

/
2
)] . (8)

We note that, for an ultra-relativistic electron (γ0 � 1) and
the case |uy0 + ā| � uz0, the mean longitudinal speed can be
simplified as

βL
z � 1 − a2

0

/
8γ 2

0

1 + a2
0

/
8γ 2

0

. (9)

It is interesting to note that both the transverse and the longi-
tudinal components of the mean momentum differ from their
initial values: the longitudinal ponderomotive forces of the
pulse rising front do reduce the mean longitudinal momen-
tum and the mean momentum along the pulse polarization
is changed by the electric field during the rising front. As a
result, the mean particle momentum inside the pulse plateau
makes an angle θ̄ with respect to the z axis satisfying

tan θ̄ = ū⊥
ūz

= 2h0
(
u2

x0 + (uy0 + ā)2
)

[
h2

0 − (
1 + u2

x0 + (uy0 + ā)2 + a2
0

/
2
)] . (10)

We stress that such an incidence angle may differ consider-
ably from the incidence angle θ0 = tan−1(u⊥0/uz0) that the
particle had before it reached the pulse. This implies that,
due to both the acquired transverse momentum and the re-
duced longitudinal momentum, the particles can escape the
inner region of the pulse focal spot even if their unperturbed
trajectories were very close to the pulse-propagation axis.
This effect has been already stressed for the sharp-plateau
case [27].

The computation of the particle trajectory is strongly sim-
plified by expressing its position as a function of the parame-
ter ξ ≡ t + z(t)/c. Introducing the ξ derivative of the position
�̃β ≡ d�r/cdξ = �β/(1 + βz), we obtain

β̃x = ux0

h0
, β̃y = uy0 + a

h0
, β̃z = h2

0 − (1 + �u2
⊥)

2h2
0

, (11)

and the parametric description of the particle position in the
plateau can be obtained by integrating Eq. (11) over the ξ

parameter.
After the introduction of both the auxiliary vector �v ≡

�u0 + ā ŷ and the parameter h̃2
0 ≡ [h2

0 − (1 + �v2
⊥ + 1/2a2

0)]

and having omitted inessential constant terms, we found

x(ξ )/c = vx

h0
(ξ − ξ0),

y(ξ )/c = vy

h0
(ξ − ξ0) + a0

ω0h0
sin(ω0(ξ − ξ0)), (12)

z(ξ )/c = h̃2
0

2h2
0

(ξ − ξ0) − a0vy

ω0h2
0

sin(ω0(ξ − ξ0))

− a2
0

8ω0h2
0

sin(2ω0(ξ − ξ0)),

where ξ0 = −φ0/ω0. The auxiliary vector �v can be interpreted
as follows. Consider a particle p1 with initial momentum �u0

interacting with a pulse characterized by a given ā. The vector
�v represents the initial momentum which a particle p2 should
have if we impose that (i) its dynamics in the plateau is the
same as p1 and (ii) it interacts with a pulse with ā = 0, i.e.
with a mean transverse momentum ūy = vy. It is therefore
convenient to introduce the particle incidence angles in the
spherical coordinate system (θe, φe) by defining them in terms
of �v instead of �u0:

�v = v (sin θe cos φe, sin θe sin φe, cos θe) .

We stress that the particle incidence angles (θe, φe) are
referred to the effective initial momentum �v and not to the
mean particle momentum in the pulse plateau ū.

2.3 Thomson-scattered radiation by a single particle

In the classical description of the interaction of
an electron with an electromagnetic wave, the distribution
of the scattered radiation can be obtained by computing the
retarded potentials associated with the accelerated electrons
[31]. Such a description is valid provided that the energy
EX of the scattered photons is much lower than the electron
energy [2]. In the far-field approximation, the distribution
of the scattered photons emitted with pulsation ω along the
direction �n (see Fig. 1a) can be obtained with the relation [31]

d2 N

d
dω
= α

(2π )2
ω

∣∣∣∣
∫

dt �n × (�n × �β(t))eiω(t−�n·�r (t)/c)

∣∣∣∣
2

, (13)

where α = e2/h̄c is the fine-structure constant, �β ≡ d�r/cdt is
the electron speed and d
 is the unit solid angle.

The time integral in Eq. (13) can be estimated analyti-
cally provided that several assumptions are fulfilled. First, the
collective space-charge effects are negligible, i.e. each elec-
tron oscillates independently of the others. This assumption
is valid for short enough pulses, as reported in [7], and it has
been used to derive the particle’s momentum during the in-
teraction. Second, the pulse Rayleigh length ZR = πw2

0/λ0

is much larger than the pulse longitudinal size cT , so that
the plane-wave approximation holds. Third, the initial radial
position r0 of each electron should be smaller than the pulse
transverse size w0 and the electron incidence angle θe satisfies
|θe| < 2(w0β

L
z /cT ). In this case each electron of the bunch

lies in the region in which the radial distance from the pulse
axis is smaller than the pulse transverse size for all the dura-
tion tint = T/(1 + βL

z ) � T [1 + a2
0/8γ 2

0 ]/2 of the interaction.
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For a usual Gaussian transverse envelope, this assumption en-
ables the approximation that each electron interacts with a
radially homogeneous plane wave, thus allowing us to ne-
glect the transverse ponderomotive forces (for an a posteriori
discussion of the validity of the approximation see Sect. 2.8).

By using relations (6) and (12), the exponential term in
Eq. (13) can be written as

exp

[
iω

(
t − �n · �r

c

)]
≡ exp [i(�0 + δ�)] , (14)

where

δ� =ω

(
ρ0(ξ − ξ0) − ρ1

1

ω0
sin ω0(ξ − ξ0)

+ ρ2
1

ω0
sin 2ω0(ξ − ξ0)

)
,

ρ0 = 1

h2
0

[
h2

0 − (1 + cos θ )

2
h̃2

0−h0 sin θ (vx cos φ+vy sin φ)

]
,

ρ1 = a0

h2
0

[h0 sin θ sin φ − vy(1 + cos θ )],

ρ2 = a2
0

8h2
0

(1 + cos θ ) (15)

and �0 an inessential phase factor which can be omitted since
an incoherent summation over the single-particle contribu-
tions is employed.

Following Ref. [7], the computation of the scattered-
radiation distribution proceeds by decomposing the term
�n × (�n × �β) in Eq. (13) as a sum of a vector parallel to the
versors θ̂ and φ̂ of the spherical coordinates

�n × (�n × �̃β) = −θ̂ (β̃x cos θ cos φ + β̃y cos θ sin φ − β̃z sin θ )

+ φ̂(β̃x sin φ − β̃y cos φ) (16)

and by making an expansion of the exponential term
with the help of the Bessel identity exp(iµ sin φ) =∑∞

n=−∞ Jn(µ) exp(inφ). Moreover, defining the quantity

�V ≡ 1

T

∫ T

0
dξ �n × (�n × �̃β) exp(iδ�) = θ̂Vθ + φ̂Vφ

and by using Eq. (15), the angular and spectral distribution of
the radiation emitted by a single electron can be expressed as

d2 N

d
dω
= α

(2π )2
ωT 2(|Vθ |2 + |Vφ|2), (17)

with

Vθ = − 1

h0

∞∑
m,n=−∞

Jm

(
ρ2

ω

ω0

)
ei�ωn (T/2−ξ0) sinc

(
�ωn

T

2

)

×
{ [

cos θ cos φvx + cos θ sin φvy − sin θ h̃2
0

]
Jn+2m

×
(

ρ1
ω

ω0

)
+ a0

[
cos θ sin φ + sin θ

vy

4h0

]

×
(

Jn+2m−1

(
ρ1

ω

ω0

)
+ Jn+2m+1

(
ρ1

ω

ω0

))

+ sin θ
a2

0

8h0

(
Jn+2m−2

(
ρ1

ω

ω0

)
+ Jn+2m+2

(
ρ1

ω

ω0

))}
,

Vφ = 1

h0

∞∑
m,n=−∞

Jm

(
ρ2

ω

ω0

)
ei�ωn (T/2−ξ0) sinc

(
�ωn

T

2

)

×
{

[sin φvx − cos φvy]Jn+2m

(
ρ1

ω

ω0

)

− cos φ
1

2
a0

(
Jn+2m−1

(
ρ1

ω

ω0

)
+ Jn+2m+1

(
ρ1

ω

ω0

))}
.

(18)

In Eq. (18) we have introduced �ωn ≡ ρ0ω − nω0 and
sinc(x) ≡ sinc(x)/x . Equation (18) should be meant either as
exact or approximate, depending of the real shape of the pulse.
For a sharp flat-top pulse Eq. (18) is exact and the dependence
of the scattered-radiation distribution on the initial phase is
included having substituted the initial momentum uy0 with
uy0 − a0 cos φ0. For a smooth flat-top profile Eq. (18) is ap-
proximate since the scattered radiation generated during the
rising and falling fronts of the pulse has been neglected. Since
for a smooth flat-top profile λ0/c � TR � T , the relative er-
ror introduced by truncating the time integration in Eq. (18)
in the plateau region is of the order TR/T � 1.

Each component of �V is obtained as a sum of harmonics,
each peaked at the resonance frequency ωn = nω and having
full width at half maximum δωn , with

ωF = ω0

ρ0
, δωn � 1.2(2π )

ρ0T
= 1.2

Nc
ωF (19)

(see also Eq. (15)), Nc being the number of cycles of the laser
pulse (Nc = ω0T/(2π )). The relative spectral width (δωn/ωn)
of each harmonic in Eq. (18) reads

δωn

ωn
� 1.2

1

nNc
.

In the estimation of Eq. (17) we are faced with the square
modulus of each V term, so in the general case the scattered
photon spectral distribution is made up of a sum of products
of harmonics of Vθ and Vφ with different harmonic numbers.
Note, however, that a sensible overlapping between different
harmonics can occur for very low pulse durations (namely
Nc < 2, i.e. T < 7 fs for a λ0 = 1-µm pulse).

Let us consider as an example the cases of an electron mov-
ing exactly along the z direction with γ0 = 10 (i.e. of energy
� 5 MeV), colliding with two different sharp flat-top pulses
of normalized amplitude a0 = 1.5, wavelength λ0 = 1 µm
(i.e. of intensity I � 3 × 1018 W/cm2) and different durations
T1 = 3 fs and T2 = 20 fs, respectively. Both the pulses have
an initial phase φ0 = π/2, so that the mean value of the vec-
tor potential is null. The computation of the scattered-photon
distribution is obtained with Eqs. (17) and (18) and the results
are sketched in Figs. 3 and 4, where the distributions in the
plane x = 0 (φ = π/2) are shown. In both the cases the scat-
tered photons are emitted forward of the electron velocity into
a cone of approximate aperture ≈ 1/γ0. However, the spec-
tral distributions are very different: in the case of the 20-fs
pulse a clear harmonic distribution is present (see also [7]),
while in the case of 3 fs the regular distribution of equally
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FIGURE 3 Spectral and angular distribution in arbitrary units of the pho-
tons emitted by the head-on collision between a 5-MeV electron (γ0 = 10)
moving along the z axis and a laser pulse of amplitude a0 = 1.5, wavelength
λ0 = 1 µm, duration T1 = 3 fs and initial phase φ0 = π/2 (ā = 0). The radi-
ation is collected at the azimuthal angle φ = π/2 and is mainly emitted into
a cone of aperture ≈ 1/γ0. The scattered-photon pulsation is shown in units
of the fundamental frequency ωF = ω0/ρ0 on the axis. Note that the spectral
distribution does not resemble a sum of harmonics

spaced peaks is lost due to the overlapping between different
n′s in Vθ and Vφ .

If either ā �= 0 or the electron is initially traveling off
axis, the resulting scattered photons are distributed mainly
into a cone whose axis is aligned with the vector �v (see
also [29], in which the effect of the initial phase was not
taken into account). In order to make this more evident, let
us consider the Thomson scattering between a laser pulse
and an electron having the same parameters as the former
example but where the direction of �v is now off axis with inci-
dence angle θe = 50 mrad and azimuth angle φe = π/2. Since
1/γ0 ≈ 0.1, we expect that the radiation will be mainly emit-
ted into a cone having direction (θe ≈ 0.05 rad, φe = π/2 rad)
in spherical coordinates, having an aperture ≈ 2/γ0 ≈ 0.2 rad.
The scattered radiation is then collected into a cone of half-

FIGURE 4 Spectral and angular distribution in arbitrary
units of the photons emitted by the head-on collision be-
tween a 5-MeV electron (γ0 = 10) moving along the z
axis and a laser pulse of amplitude a0 = 1.5, wavelength
λ0 = 1 µm, duration T2 = 20 fs and initial phase φ0 = π/2
(ā = 0). The radiation is collected at the azimuthal angle
φ = π/2 and the scattered-photon pulsation is shown in
units of the fundamental frequency ωF = ω0/ρ0 on the
axis. Since Nc = 6, different harmonics are well separated

aperture θMax = 0.2 rad aligned along the z axis and the re-
sulting scattered-photon distribution in the plane φ = π/2 is
shown in Fig. 5.

2.4 Small scattering angle approximation

Usually the angular divergence of relativistic elec-
tron beams produced by standard RF accelerators is very low
(values of the order of a few tens of milliradians are quite
common) and electron beams obtained with novel accelera-
tion schemes (e.g. laser–plasma accelerators) may have angu-
lar divergences of a few degrees as well [32, 33]. As stated
before, the incidence angle of the particle in the pulse plateau
θe depends on the ā parameter too, so that in the following we
will suppose that vy = uy0 + ā is negligible with respect to the
longitudinal initial momentum vz = uz0; this is accomplished
either by carefully tuning the initial phase for the sharp-plateau
case or by using a pulse with a sufficiently high rising time. If
a pulse with a very short rise time is employed, so that ā is not
very small with respect to uz0, the small-angle approximation
is valid provided that the electron bunch is initially moving
off axis with |ux0| � uz0 and |uy0 + ā| � uz0.

In the following we will suppose that each particle of
the bunch is ultra relativistic (γ0 � 1) and interacts with
a pulse of amplitude a0 <

√
8γ0. In this case the scat-

tered radiation is emitted mostly in a cone with aperture ≈√
1 + a2

0/2/γ0 � 1 (see below). For these relativistic beams
both incidence θe and scattering θ angles are small, so that a
more simplified expression for the scattered-photon distribu-
tion can be found by making the following approximations:
β0 � 1 − 1/(2γ 2

0 ), sin θe � θe, cos θe � 1 − θ2
e /2, sin θ � θ

and cos θ � 1 − θ2/2 in Eq. (18), giving

Vθ � − 1

2γ0

∞∑
m,n=−∞

Jm

(
ρ2

ω

ω0

)
ei�ωn (T/2−ξ0) sinc

(
�ωn

T

2

)

×
{[

γ θe cos(φ−φe)−γ θ

(
1− a2

0

8γ 2
0

)]
Jn+2m

(
ρ1

ω

ω0

)
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FIGURE 5 Spectral and angular distribution of the photons
emitted by the head-on collision between a 5-MeV electron
(γ0 = 10) with an off-axis �v vector (θe = 50 mrad, φe = π/2)
and a laser pulse of amplitude a0 = 1.5, wavelength λ0 = 1 µm
and duration T2 = 20 fs. The radiation is collected at the az-
imuthal angle φ = π/2 and the scattered-photon pulsation is
shown in units of the fundamental frequency ωF = ω0/ρ0 at
(θ = θe, φ = φe)

+
[
1

2
a0 sin φ

](
Jn+2m−1

(
ρ1

ω

ω0

)
+Jn+2m+1

(
ρ1

ω

ω0

))

+ γ0θ
a2

0

16γ 2
0

(
Jn+2m−2

(
ρ1

ω

ω0

)
+ Jn+2m+2

(
ρ1

ω

ω0

))}
,

Vφ � 1

2γ0

∞∑
m,n=−∞

Jm

(
ρ2

ω

ω0

)
ei�ωn (T/2−ξ0) sinc

(
�ωn

T

2

)

×
{
γ0θe sin(φ − φe)Jn+2m

(
ρ1

ω

ω0

)
− cos φ

1

2
a0

×
(

Jn+2m−1

(
ρ1

ω

ω0

)
+ Jn+2m+1

(
ρ1

ω

ω0

))}
, (20)

where the following approximated relations for ρi are used:

ρ0 � 1

4γ 2
0

[
1 + (γ0θ̃ )2 + 1

2
a2

0

]
,

ρ1 � a0

2γ 2
0

[γ0θ sin φ − γ0θe sin φe] , (21)

ρ2 � a2
0

16γ 2
0

,

and where θ̃ ≡ (θ2 + θ2
e − 2θ · θe cos(φ − φe))1/2 is the angle

between �v and �n. In the small-angle limit the fundamental
frequency ωF reduces to

ωF = 4γ 2
0[

1 + (γ0θ̃ )2 + 1
2 a2

0

]ω0. (22)

For a given azimuthal angle φ the minimum value of θ̃ is
realized at the scattering angle

θM = θe cos(|φ − φe|). (23)

At this angle θ̃2 = θ2
e sin2(φ − φe) and the maximum value of

the fundamental frequency at φ fixed reads

ωM
F = 4γ 2

0[
1 + (γ0θe sin(φ − φe))2 + 1

2 a2
0

]ω0. (24)

The absolute maximum of ωF is obtained with (θ = θe, φ =
φe) (so that θ̃ = 0), i.e. when we observe the scattered photons
in the same direction as the effective electron initial momen-
tum �v (see also [29]).

2.5 Long-pulse limit

Let us consider the case of a long laser pulse, i.e. a
pulse with a large number of cycles Nc � 1. Since the width
of each harmonic in Eq. (18) is much lower than the harmonic
spacing (ωn+1 − ωn) = ωF, the following approximations can
be employed:

ei(�ωn−�ωm )(T/2−ξ0) sinc(�ωm T/2) sinc(�ωnT/2)

� δmn sinc(�ωnT/2)2 Jm

(
ρ2

ω

ω0

)

� Jm(nε2), Jm

(
ρ1

ω

ω0

)
� Jm(nε1), for ω � ωn, (25)

where we have introduced the parameters

ε1 ≡ ρ1

ρ0
= a0

[h0 sin θ sin φ − vy(1 + cos θ )][
h2

0− (1+cos θ)
2 h̃2

0−h0 sin θ (vx cos φ+vy sin φ)
] ,

ε2 ≡ ρ2

ρ0
= a2

0

8

(1 + cos θ )[
h2

0− (1+ cos θ)
2 h̃2

0−h0 sin θ (vx cos φ+vy sin φ)
] ,

(26)

and we have neglected the small dependence of the Bessel
functions on their arguments within the spectral range of a sin-
gle harmonic. This is justified provided that the combinations
of parameters ε1/Nc and ε2/Nc are well below unity, because
the error δ J introduced by approximating Jm(ρ1,2 ω/ω0) as
Jm(nρ1,2/ω0) is

δ Jm ≈ (ρ1,2δωn/ω0)J ′
m(nρ1,2/ω0)

= (ε1,2/Nc)[Jm−1(nε1,2) − Jm+1(nε1,2/ω0)]/2.
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As a result, the scattered-radiation distribution (Eq. (17))
can be approximated in the long-pulse limit as

d2 N

d
dω
� α

(2π )2
ωT 2

∞∑
n=1

{
sinc2

(
�ωn

T

2

)
(|Cθ (n, θ, φ)|2

+ |Cφ(n, θ, φ)|2)

}
, (27)

where

Cθ (n, θ, φ) = − 1

h0

∞∑
m=−∞

Jm(nε2)

×
{ [

cos θ cos φvx + cos θ sin φvy − sin θ h̃2
0

]

× Jn+2m(nε1) + a0

[
cos θ sin φ + sin θ

vy

4h0

]

× (Jn+2m−1(nε1) + Jn+2m+1(nε1))

+ sin θ
a2

0

8h0
(Jn+2m−2(nε1) + Jn+2m+2(nε1))

}
,

Cφ(n, θ, φ) = 1

h0

∞∑
m=−∞

Jm(nε2)

{
[sin φvx − cos φvy]

× Jn+2m(nε1) − cos φ
1

2
a0 (Jn+2m−1(nε1)

+ Jn+2m+1(nε1))

}
. (28)

For a given scattered direction, the radiation spectral distri-
bution consists of a sum of equally spaced harmonics of a
fundamental pulsation ωF = ω0/ρ0. Since the natural line
width of each harmonic is very small, it can be useful to
express the spectral dependence of d2 N/dωd
 by means
of Dirac deltas. By using the limit sin(lx)2/(lx2) → πδ(x)
for l → ∞, the scattered-photon distribution can be further
approximated as

d2 N

d
dω
�

∞∑
n=1

C(n, θ, φ)δ(ω − nωF), (29)

where

C(n, θ, φ) ≡ αn Nc
1

ρ2
0

(|Cθ (n, θ, φ)|2 + |Cφ(n, θ, φ)|2) (30)

is the angular distribution of the scattered photons in the nth
harmonic.

2.6 Small scattering angle in the long-pulse
(SALP) limit

The long-pulse and small-angle approximations
can be applied together for most of the Thomson backscat-
tering experiments which can be performed nowadays, since
the available ultra-intense laser pulses have durations exceed-
ing tens of femtoseconds and usually ultra-relativistic elec-
tron bunches with reduced angular divergence are employed.

To get the SALP (small-angle, long-pulse) approximation of
the scattered-photon distribution we start from the long-pulse
limit (Eq. (27)) and we make the small-angle approxima-
tion in Eq. (28) supposing that θ � 1, θe � 1 and γ0 � 1,
giving

CSALP
θ � − 1

2γ0

∞∑
m=−∞

Jm(nε2)

×
{[

γ θe cos(φ − φe) − γ θ

(
1 − a2

0

8γ 2
0

)]
Jn+2m(nε1)

+
[

1

2
a0 sin φ

]
(Jn+2m−1(nε1) + Jn+2m+1(nε1))

+ θ
a2

0

16γ0
(Jn+2m−2(nε1) + Jn+2m+2(nε1))

}
, (31)

CSALP
φ � 1

2γ0

∞∑
m=−∞

Jm(nε2)

×
{
γ0θe sin(φ − φe)Jn+2m(nε1)

− cos φ
1

2
a0 (Jn+2m−1(nε1) + Jn+2m+1(nε1))

}
.

In the SALP limit the εi parameters reduce to

εSALP
1 � 2a0

[γ0θ sin φ − γ0θe sin φe][
1 + (γ0θ̃2)2 + 1

2 a2
0

] ,

(32)

εSALP
2 � 1

4
a2

0
1[

1 + (γ0θ̃2)2 + 1
2 a2

0

] .

We are able to obtain a simplified expression of Eq. (31),
which is valid when we observe the scattered radiation in
exactly the same direction as �v. When (θ = θe, φ = φe)
the ε1 parameter is null, so that Jq (pε1) = δ0,q . By us-
ing the relation (Ja−1(x) + Ja+1(x)) = (2a/x)Ja(x), Eq. (31)
reduces to

CSALP
θ (n, θe, φe) � − 1

2γ0

×





1

4γ 2
0

γ0θe J−n/2(nε2) n = even

1

2
a0 sin φe

(
J−(n−1)/2(nε2)

+ J−(n+1)/2(nε2)
)

n = odd (33)

CSALP
φ (n, θe, φe) � − 1

2γ0

×





0 n = even

1

2
a0 cos φe

(
J−(n−1)/2(nε2)

+ J−(n+1)/2(nε2)
)

n = odd

Note that in Cθ the even-harmonic term is negligible in the
SALP approximation, so that the peak value of the nth odd
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harmonic yield becomes

C(n, θe, φe) = αn Nc

(
γ0a0(

1 + 1
/

2 a2
0

)
)2

×
{[

J−(n−1)/2

(
n

a2
0

4 + 2a2
0

)

+ J−(n+1)/2

(
n

a2
0

4 + 2a2
0

)]2
}

, (34)

while even-harmonic radiation is null. This result generalizes
Eq. (39) in Ref. [7] for the case θi �= 0

2.7 Linear Thomson scattering

The nonrelativistic quivering limit can be derived
by Eqs. (15), (17) and (18) by performing a perturbative ex-
pansion of �V on the laser strength parameter a0 up to the first
order. The ρi parameters reduce to

ρ0 � 1

h2
0

[
h2

0 − (1 + cos θ )h0vz

− h0 sin θ (vx cos φ + vy sin φ)
]
,

(35)
ρ1 = a0

1

h2
0

[h0 sin θ sin φ − vy(1 + cos θ )],

ρ2 � 0

and, by using the following small-argument expansion of
the Bessel functions Jp(x) = δ0,p + 1/2 x(δ1, p − δ−1, p) +
O(x2), we can approximate Jp(ρ1ω/ω0) and Jq (ρ2ω/ω0) as

Jp(ρ1ω/ω0) � δ0, p + 1

2
ρ1

ω

ω0
(δ1, p − δ−1, p),

(36)
Jq (ρ2ω/ω0) � Jq (0) = δ0, q .

The resulting scattered-photon distribution is computed by
Eq. (17) with

Vθ � −a0

h0
sinc

(
�ω1

T

2

){
1

2h2
0

ω

ω0
[cos θ cos φvx

+ cos θ sin φvy − 2 sin θh0vz]

× [h0 sin θ sin φ − vy(1 + cos θ )]

+
[

cos θ sin φ + sin θ
vy

4h0

]}
,

Vφ = a0

h0
sinc

(
�ω1

T

2

) {
1

2h2
0

ω

ω0
[sin φvx − cos φvy]

× [h0 sin θ sin φ − vy(1 + cos θ )] − 1

2
cos φ

}
. (37)

As expected, only the fundamental harmonic ω ≈ ωF =
ω0/ρ0 is present.

To deal with a more tractable expression for the Thomson
backscattering of a laser pulse with an ultra-relativistic elec-
tron having a small incidence angle θe � 1, we employ the

small-angle approximation in Eq. (37), giving

d2 N

d
dω
� α

16(2π )2

a2
0 T 2

γ 2
0

[
1 − 4

(γ0θ sin φ − γ0θe sin φe)2

(1 + (γ0θ̃ )2)2

]

×ω sinc2

(
T

2
(ρ0ω − ω0)

)
, (38)

where the ρ0 parameter has been simplified as ρ0 �
(1 + (γ0θ̃ )2)/(4γ 2

0 ). We observe that the fundamental fre-
quency ωF = 4γ 2

0 ω0/(1 + (γ0θ̃ )2) reduces to the well-known
scattered-radiation frequency 4γ 2

0 ω0/(1 + (γ0θ )2) for the case
of backscattering onto an electron moving on axis (see e.g.
[8]).

A further simplification (SALP) is obtained supposing
both small angles and a very long pulse. In this case the spec-
tral distribution of the photons emitted in a given direction is
well approximated by a Dirac δ function, giving

d2 N

d
dω

SALP

� αNc a2
0

γ 2
0

(1 + (γ0θ̃)2)2

×
[

1 − 4
(γ0θ sin φ − γ0θe sin φe)2

(1 + (γ0θ̃ )2)2

]

× δ

(
ω − 4γ 2

0

(1 + (γ0θ̃ )2)
ω0

)
. (39)

An integration over the photon energies is now straightfor-
ward and the resulting angular distribution can be expressed
involving the differential cross section for the linear Thomson-
scattering process dσ/d
:

dσ

d

� 4r2

0

γ 2
0

(1 + (γ0θ̃ )2)2

×
[

1 − 4
(γ0θ sin φ − γ0θe sin φe)2

(1 + (γ0θ̃ )2)2

]
, (40)

where r0 = e2/mec2 is the classical electron radius and the
angular integration of Eq. (40) yields the total Thomson
cross section σTh = 8πr2

0 /3. It is customary to note that the
Thomson differential cross section (40) for electrons mov-
ing on axis in the pulse plateau (v⊥ = 0) reduces to the
well-known cross section of the Thomson scattering valid
for θ � 1 and γ0 � 1 (see e.g. [30]):

dσ

d

� 4r2

0 γ 2
0

(
1 + γ 4

0 θ4
)

(
1 + γ 2

0 θ2
)4 . (41)

We conclude this subsection by giving an approximated
expression for the spectral distribution S(ω) = dN/dω in the
SALP limit of the scattered photons which are generated by
linear Thomson backscattering of an electron moving on axis
in the pulse plateau and collected forward of the electron
velocity within a cone of half-aperture θMax. This expres-
sion can be employed to obtain a rough expression for the
spectral distribution of the radiation generated with very low
transverse emittance electron bunches (see Sect. 3) and it is
simply obtained from Eq. (39) with a straightforward change
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in variables, giving

S(ω) =





α

64

T a2
0

ω2
0γ

6

(
ω2 − 4ωω0γ

2 + 8ω2
0γ

2)

if
4γ 2ω0

1 + γ 2θ2
Max

≤ ω ≤ 4γ 2ω0,

0, otherwise.

(42)

2.8 Radial inhomogeneity effects

We are now able to deduce a posteriori simple
relations stating the strength of the effects produced by
the radial dependence of the laser pulse amplitude on the
scattered-radiation distribution. A ‘direct’ effect is merely
induced by the dependence of the peak frequency and an-
gular distribution of the harmonics on the square of the laser
strength (a(r ) = a0 exp(−r2/w2

0) for a standard Gaussian pro-
file), which in turn introduces a dependence of the scattered-
radiation distribution on the radial distance r of the particle
from the pulse axis. An ‘indirect’ effect is caused by the
transverse ponderomotive forces, which generate a particle
transverse momentum, thus inducing the particles to escape
from the on-axis region of the pulse.

Let us consider an electron moving relativistically (γ0 �
1) with a small angle θe (i.e. v⊥ � vz � γ0) and experiencing a
head-on collision with a pulse. As has been stated in Sect. 2, if
the pulse has a large amplitude the longitudinal ponderomotive
forces of the rising front do reduce the longitudinal momentum
of the electron during the interaction ūz, which is lower than
its initial momentum by a factor ūz/uz0 � 1 − a2

0/8γ 2
0 (see

Eq. (10)), so that the incidence angle of the interacting particle
is amplified correspondingly:

tan θ̄ � θe

1 − a2
0

/
8γ 2

0

. (43)

Note that tan θ̄ diverges if a0 approaches
√

8γ0, so in the
following we will consider only scenarios in which tan θ̄ � θ̄ ,
i.e. the incidence angle of the particle inside the pulse is
well below unity. The particle interacts with the pulse for
a time tint = T/(1 + βL

z ) � T (1 + a2
0/8γ 2

0 )/2, which has its
minimum value of T/2 for a low-intensity pulse (a0 � √

8γ0).
We consider first the direct geometric effects. The radial

coordinate of the particle during its interaction with the pulse
varies in the range [r0 − θ̄ (ctint), r0 + θ̄ (ctint)] and should be
compared with the pulse waist w0. Therefore, an effective

radial coordinate reff ≡
√

r2
0 + (θ̄ctint)2 can be introduced. As

a result, geometric radial inhomogeneity effects are negligible
if the initial radial position and incidence angle of the electron
satisfy

r2
eff = r2

0 +
(

θecT

2βL
z

)2

< w2
0, (44)

where βL
z � (1 − a2

0/8γ 2
0 )/(1 + a2

0/8γ 2
0 ) (see Sect. 2).

A second effect is the radial drift velocity produced by
transverse ponderomotive forces (TPF), which have been fully
neglected in the derivation of the particle trajectories. Let us

now switch on TPF (see e.g. [34] and references therein) in
the particle dynamics:

F⊥
p = − e2

2meγ̄ c2
∇⊥(|A|2), (45)

where γ̄ is a mean over a pulse oscillation of γ = (1 +
�u2(t))1/2. The time derivative of the normalized transverse
momentum can then be written in terms of the transverse
spatial derivative of the normalized pulse amplitude as
(

du⊥
dt

)

TPF

� c

2γ̄
∇⊥a2. (46)

With the hypothesis that TPF will introduce small changes
in the particle dynamics and by using relations (6) with
(|vx|, |vy|) � vz � γ0, we find γ̄ � γ0(1 + a2

0/8γ 2
0 ), so that

the variation induced by TPF of the radial momentum can be
estimated as

δuTPF
⊥ <̃

(
du⊥
dt

)

TPF

tint �
(

(cT )reffa2
0

γ0w
2
0

)
. (47)

Equation (47) is valid provided that |δuTPF
⊥ | �

√
(ū⊥)2 �

a0/
√

2, so that the relation (cT )reffa0/γ0w
2
0 � 1 must be ful-

filled, too.
The net effect of the transverse ponderomotive forces is

the refraction of the particles away from the pulse axis, with
a refraction angle θR � δuTPF

⊥ /ūz � (cT )reffa2
0/[γ 2

0 w2
0(1 −

a2
0/8γ 2

0 )]. A criterion for determining the validity of neglect-
ing transverse ponderomotive forces in the estimation of the
Thomson-scattered radiation is obtained by imposing an up-
per limit on θR. As before, the radial excursion of the particle
during the interaction with the pulse should not exceed the
pulse waist, which means that θR < 2w0/[cT (1 + a2

0/8γ 2
0 )]

or

a2
0(cT )2reff

2γ 2
0 βL

z w3
0

< 1 (48)

must hold true. Note that Eq. (48) can be rewritten by defining
an effective incidence angle

θTPF ≡ (cT )reffa
2
0

/(
γ 2

0 w2
0

)
, (49)

which takes into account the effects of TPF since the very
beginning, and imposing that (see Eq. (44))

θTPF < 2βL
z w0

/
cT . (50)

As a result, the effect of TPF is to increase the incidence

angle of the particle to a value θeff ≈
√

θ2
e + θ2

TPF, so that θTPF

should be taken into account when we make estimations of
the blurring effects on the scattered-photon spectrum.

If relations 44 and 50 are fulfilled, the relative shift of
the fundamental frequency of the radiation emitted by two
particles having (r0 �= 0, v⊥ �= 0) and (r0 = 0, v⊥ = 0), re-
spectively, can be approximately estimated as

δωF/ωF � δ
(
a2

0

/
2
)

(
1 + γ 2

0 θ̃2 + a2
0

/
2
)

� 2a2
0(

1 + γ 2
0 θ̃2 + a2

0

/
2
)

(
r2

eff + (θRctint)2

w2
0

)
. (51)
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The blurring in the scattered-radiation distribution introduced
by the radial dependence of the pulse amplitude is then of the
second order in the ratios θR(ctint)/w0 and reff/w0 and it is
more evident when the photons are collected forward of the
initial direction of motion of the particle.

3 Thomson backscattering by an electron bunch

In dealing with the estimation of the scattered-
photon distribution generated by the head-on collision of an
electron bunch and a laser pulse, we have to sum up inco-
herently the contributions of the single electrons, i.e. we in-
tegrate over the scattered-photon distributions of the particles
of the bunch. The computation of d2 N/dωd
 reported here
is valid provided that the pulse is linearly polarized (along y,
for instance) and flat topped. The employed plane-wave ap-
proximation also imposes a higher limit for the bunch (σL) and
pulse (cT ) lengths, namely (σL, cT (1 + a2

0/8γ 2
m)/2) � ZR =

πw2
0/λ0, where γm is the minimum Lorentz factor of the parti-

cles in the bunch. Also, for a given pulse duration, the charge of
the bunch should be low enough to let the space-charge effects
be negligible during the interaction [7]. In order to neglect the
pulse transverse inhomogeneity effects, the transverse bunch
size σT should be smaller than the pulse waist and the angu-
lar divergence �θe of the bunch should satisfy the relations
(44) and (50) with the substitutions r0 → σT, θe → �θe/2
and γ0 → γm. Moreover, for extremely short pulses, we must
take into account the effect of the pulse rising front, too. Since
in the plateau the temporal mean of the transverse momentum
along y is vy ≡ ūy = uy0 + ā, it is mandatory that the initial
phase φ0 be fine tuned so as to ensure that ūy/ūz < �θe.

By introducing the transverse 	(γ, θe, φe, re) and spectral
F(γ ) distributions of the electrons having initial energy E =
γ mec2, incidence angles (θe, φe) and radial coordinate re we
can write the total scattered-photon distribution of an electron
bunch as

d2 N

d
dω

∣∣∣∣
Bunch

=
∑

i

(
d2 N

d
dω

)

i th electron

=
∫

dγ dθedφedre F(γ )	(γ, θe, φe, re)

×
(

d2 N

d
dω

)

γ,θe,φe,re

, (52)

where (d2 N/d
dω)γ,θe,φe,re is the photon distribution pro-
duced by an electron with energy γ mec2, incidence angles
(θe, φe) and initial radial coordinate re.

Expression (52) can be applied both in the exact relation
(18) and in all the simplified limiting cases described in the
previous section and it shows the simplest form in the case of
linear Thomson scattering in the SALP limit:

d2 N

d
dω

∣∣∣∣
SALP

Bunch

� αNca2
0

∫
dγ dθedφedre exp

(−2r2
e

/
w2

0

)

× F(γ )	(γ, θe, φe, re)
γ 2

(1 + (γ θ̃ )2)2

×
[

1 − 4
(γ θ sin φ − γ θe sin φe)2

(1 + (γ θ̃ )2)2

]

× δ

(
ω − 4γ 2

(1 + (γ θ̃)2)
ω0

)
, (53)

where θ̃2 = θ2 + θ2
e − 2θ θe cos(φ − φe).

A remark is needed here. In a previous work of Catravas
et al. [8] (see also [14]), a relation linking the scattered-
radiation distribution for an electron bunch to the yield of a
single electron moving on axis was given in the case of small
scattering and incidence angles and nonrelativistic quivering.
The relation involved a convolution in the form

d2 N

d
dω
(ω, θ, φ)

�
∫

dγ

∫
dθedre exp

(−2r2
e

/
w2

0

)

× F(γ )	(γ, θe, re)

(
d2 N

d
dω

)θe=0

γ

(ω, θ − θe, φ), (54)

where invariance over the azimuthal angle of the particle dis-
tribution was supposed and where (d2 N/d
dω)θe=0 means
the scattered-photons distribution generated by a single elec-
tron having θe = 0. The relations (53) and (54) do not match.
However, Eq. (54) is an approximation of Eq. (53) obtained by
substituting φe with φ (case θe ≥ 0) or φ − π (case θe < 0),
by which θ̃ → (θ ∓ θe) for θe ≥ 0. We stress that, as will
clear below, Eq. (54) is a good approximation of (53) in the
case θ � θe but it underestimates the effects of the bunch
divergence when θ>̃θe.

To apply the linear Thomson scattering formula (53),
we consider first the simplest case of backscattering be-
tween a pulse having a0 � 1 and a bunch with a negligi-
ble angular divergence, Gaussian transverse spatial envelope
�(re) = re exp(−r2

e /2σ 2
T)/(2πσ 2

T) and a small energy spread
�EFWHM/E � 1. Since the incidence angle θe of each par-
ticle is null, we immediately note that, once the acceptance
angle θMax is fixed, the spectral distribution of the collected
photons can be obtained analytically from Eq. (42) by taking
also into account the dependence of the pulse amplitude on
the radial coordinate. This can be pursued by introducing a
filling factor

F ≡
[∫

dre exp
(−2r2/w2

0

)
�(re)

]/[∫
dre�(re)

]

which in this case reduces to F = (w2
0/[w2

0 + 4σ 2
T]). A

complete computation of the spectrum would require that an
energy integration over the particle’s energy is performed.
However, for the case of bunches with small energy spread,
the particle’s energy distribution can be approximated as a
Dirac delta function, obtaining a scattered radiation spectrum
of the form

S(ω) = (FNe)





α

64

T a2
0

ω2
0γ

6

(
ω2 − 4ωω0γ

2 + 8ω2
0γ

2
)

if
4γ 2ω0

1 + γ 2θ2
Max

≤ ω ≤ 4γ 2ω0,

0, otherwise,

(55)



430 Applied Physics B – Lasers and Optics

FIGURE 6 a Angular and spectral distribution integrated
over the azimuthal angle of the scattered photons of a
Ti:Sa laser pulse of flat-top temporal profile with dura-
tion T = 1 ps, peak amplitude a0 = 0.1 and waist size
w0 = 30 µm and an electron bunch with negligible angular
divergence and narrow energy distribution with mean en-
ergy of 40 MeV (γ = 80) and spread δE/E = 2.5%. The
distribution has been obtained by summing up the contri-
butions of randomly generated sample particles. b Spec-
tral distribution of the radiation collected within a cone of
half-aperture θMax = 2/γ = 250 mrad. The solid line has
been obtained by integrating the distribution in (a) and
the dashed line is the analytical result (55) valid for both
negligible divergence and energy spreads

γ being the mean Lorentz factor of the bunch. This formula is
very useful when we want to get started with the estimations
of the expected spectral width and the number of photons,
provided that the acceptance angle is fixed. As a first result,
we note that the nonzero part of S(ω) is almost flat, so that the
energy spread is basically given by the maximum and min-
imum energies in the range, i.e. δω/ max(ω) � γ 2θ2

Max, thus
giving a spread of 100% for θMax = 1/γ . Let us introduce the
parameter ψ = θMaxγ and let NAcc(ψ) be the number of pho-
tons collected into a cone of half-aperture θMax = ψ/γ . In the
limit of very small energy spread and angular divergence of the
bunch, NAcc can be estimated by integrating Eq. (55), giving

NAcc(ψ) = (FNe)
1

2
αω0T a2

0ψ
2 (1 + ψ2 + 2ψ4/3)

(1 + ψ2)3
. (56)

Note that for ψ � 1, NAcc ∝ ψ2 and δω/ω � ψ2, so that
the well-known relation NAcc ∝ (δω/ω) is recovered (see
e.g. [8]). We compare the spectrum (55) with that obtained
by summing up the contributions of a set of 103 randomly
generated sample particles (Monte Carlo estimation) of a
bunch having mean energy E = 40 MeV, energy spread
�EFWHM/E = 2.5% and transverse size σT = 10 µm, collid-
ing with a pulse with a waist size w0 = 30 µm and duration
T = 1 ps. The scattered-photon distribution of each sample
particle has been obtained with the SALP formula for the
linear Thomson scattering (38). The results for an acceptance
angle θMax = 2/γ = 250 mrad (ψ = 2), reported in Fig. 6,
clearly show the accuracy of the simple estimation (55).

Equation (56) states that the efficiency of the linear
Thomson scattering process increases with the bandwidth
of the collected radiation. This means that, among the pos-
sible applications of such X-ray sources, those employing
X-rays with moderately low energy spread can take ad-
vantage of the larger number of photons irradiating tar-
get. Mammography [35] is a pertinent example of such an
application, since it can employ Thomson-scattered X-ray

beams with an energy spread of the order of 20% with-
out a sizable reduction of image quality with respect to the
images obtained with monochromatic synchrotron-radiation
sources [S. Stumbo, U. Bottigli, B. Golosio and P. Oliva,
private communication (2004)]. If, instead, the aim is to
produce quasi-monochromatic X-rays, the radiation must be
collected into a cone of very small aperture, i.e. small ψ’s
are required. To show this, we report in Fig. 8a) a se-
quence of spectra obtained with the Monte Carlo method
by using progressively smaller acceptance angles, as well
as the analytic result (55) with ψ = 0.3. In Fig. 8b) we show
the number of collected photons as a function of ψ for both
the analytical and Monte Carlo estimations, which seem to
agree remarkably well.

Consider now the linear Thomson scattering process of a
laser pulse and a bunch presenting negligible energy spread
but sizable angular divergence. We focus on a bunch hav-
ing energy Eb = 40 MeV and divergence �θe = 25 mrad, by
computing the spectrum of the scattered photons collected
within three acceptance angles (θMax = 12 mrad, 25 mrad and
65 mrad). The comparison between the spectra obtained with
Eqs. (53) and (54) (see Fig. 7) clearly confirms a good agree-
ment between the two curves for θMax � θe, while the simpli-
fied expression 54 completely fails in estimating the spectral
distribution for θMax � θe.

The formulas derived in Sect. 2 for the Thomson
backscattering of a laser pulse moving exactly along the
z axis by a quasi-counterpropagating electron constitute
useful tools to evaluate (e.g. via Monte Carlo methods)
the distribution of the photons scattered by an ultra-
relativistic electron bunch with reasonably good beam qual-
ity. If Thomson backscattering is employed with the aim
to generate short, quasi-monochromatic and bright X-ray
pulses (Laser Synchrotron Source, LSS), the key bunch
parameters are the beam energy, charge and emittance.
The charge and mean energy control the total number
of scattered photons and their maximum energy, while
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FIGURE 7 Spectral distribution of the photons produced
by linear Thomson scattering between a pulse with Nc � 1
and an electron bunch of mean energy Eb = 40 MeV pre-
senting a negligible energy spread but sizable angular diver-
gence �θe = 25 mrad. Both the Monte Carlo computation
based on Eq. (42) and the simplified expression used in
the literature (Eq. (54)) are employed. a Results for an ac-
ceptance angle θMax = 12 mrad. The simplified computation
agrees quite well with the detailed estimation. b Results for
an acceptance angle θMax = 25 mrad. The matching between
the two curves is not very good. However, the simplified ex-
pression still gives a reasonable spectrum. c Results for an
acceptance angle θMax = 65 mrad. The matching between
the two curves is now very poor

the emittance basically limits the possibility to reduce
the energy spread of the collected photons. On the laser
pulse side, the product between the wavelength and the
delivered energy is proportional to the number of in-
coming (and thus to the scattered) photons. Here, we
will concentrate on the effect of the bunch divergence,
since many details of LSS have been reported elsewhere
(see e.g. [7–9]).

In the following we will consider two kind of bunches. The
first is produced by standard RF photocathode guns, which
can generate beams with a remarkably good quality (see e.g.
[36]). The second kind is obtained by using laser–plasma
accelerators with some controlling technique of the beam-
injection mechanism [37–40], which seems to be able (at
least in ‘virtual experiments’) to produce electron bunches
with low emittances as well.
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FIGURE 8 a Spectral distributions of the scattered pho-
tons for a system as in Fig. 6, obtained with different
acceptance angles θMax = ψ/γ . The thick solid line has
been obtained with the analytic spectrum (55) for ψ = 0.3.
b Total number of collected photons NAcc(ψ) for both
the Monte Carlo and analytic estimations. The numbers
have been normalized to the total scattered photon number
NTotal = 2NAcc(ψ = 1)

3.1 Standard RF guns

3.1.1 Linear regime. We now analyze the case of an X-ray
source of photons having energy EX � 40 keV, a typical value
for X-rays employed for medical diagnostics [23, 24]. We
consider a laser pulse of wavelength λ0 = 0.8 µm (E0 =
1.56 eV) and an electron bunch of energy Eb = 40 MeV,
charge Qb = 1.6 nC, transverse size σT = 10 µm and length
σL = 150 µm. Such a bunch thus contains Ne = 1010 elec-
trons moving with γ0 ≈ 80 roughly along the z axis and expe-
riencing a head-on collision with the pulse. The laser system
delivers pulses of energy EL = 0.4 J and duration T = 1 ps
with a flat-top temporal profile, with a Gaussian transverse
envelope of waist w0 = 30 µm. Since for such a long pulse
duration the pulse rise time can be of the order of a hun-
dred femtoseconds, we assume that the mean potential ā is
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FIGURE 9 Spectral distributions of the scattered photons in a scattering
process by a pulse having the same characteristics as in Fig. 6. The bunches
have now a narrow energy distribution with �E/E = 0.25% and a Gaussian
distribution in the incidence angle θe with variance σθ = �θe/

√
8 log 2 �

�θe/2.35. The spectra of the scattered photons are obtained by integrating
the spectral and angular distributions within an acceptance angle θMax =
0.2/γ . Several bunches with different emittances and thus divergences �θe �
2ε⊥

n /γ σT up to �θe � 2/γ are considered

completely negligible. Both the bunch (σL = 150 µm) and
the pulse (cT � 300 µm) lengths are much lower than the
Rayleigh length ZR = πw2

0/λ0 � 3500 µm, so that the plane-
wave approximation holds. Also, since the peak amplitude is
a0 = 0.1 � 1, linear Thomson-scattering formulas will be
used.

Our calculations are valid provided that the bunch angu-
lar divergence is limited to �θe<̃2w0/cT ≈ 200 mrad, a very
large value if compared to record numbers of a few milliradi-
ans of modern RF photoguns. Because of the low value of a0,
transverse ponderomotive forces can also be neglected. The
scattered-photon distribution is obtained with a Monte Carlo
method by summing up the contributions of single particles
in the SALP limit (see Eq. (53)).
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FIGURE 10 Spectral distributions of the scattered pho-
tons for systems as in Fig. 9. a Comparison between the
spectra estimated with both the SALP formula and the sim-
plified expression (54) for the case of angular divergence
�θeγ = 0.25 (solid line and dashed line, respectively) and
for the case �θeγ = 1.25 (dash-dotted line and dotted line,
respectively). b Number of collected photons normalized
to the case of null beam divergence versus beam divergence
and fit of the data with a function 1/

√
1 + �θ2

e (solid line)

In the following, we will consider several bunches pre-
senting different values of transverse normalized emittances
ε⊥

n � γ σT�θe/2. As in the case of negligible angular diver-
gence, we will be mainly interested in the spectral distri-
bution of the scattered radiation, which will be estimated
with a Monte Carlo method based on the SALP approx-
imation (Eq. (53)). The randomly generated sample parti-
cles are now distributed with a very narrow energy spread
(namely �Eb/Eb = 0.25%, a value reachable with currently
available RF photoguns). Such a spread introduces a very
small energy spread δω/ω � 2�Eb/Eb � 0.5% on the scat-
tered radiation, so that the angular divergence effects can be
clearly highlighted. In Fig. 9 the spectra of the scattered ra-
diation collected into a cone of half-aperture θMax = 0.2/γ

for beam transverse normalized emittances ranging from 0 to
10 mm mrad are reported. For a transverse size of the beam
σT = 10 µm the beams are characterized by angular diver-
gences reaching �θeγ � 2. The net effect of the angular
divergence is, as is well known, a spreading of the energy
distribution of the scattered photons. To reach the goal of a
5% FWHM energy spread, for example, a bunch with an-
gular divergence not exceeding �θe = 0.6/γ (σe<̃0.25/γ ),
i.e. having ε⊥

n <̃2.5 mm mrad with γ = 80 and σT = 10 µm,
should be employed.

We stress that our detailed estimation differs substantially
from that of the simplified expression (54). In Fig. 10a, in fact,
the spectra obtained with the two methods of the radiation for
a collecting angle θMax = 0.2/γ , for both the cases �θe =
0.25/γ and �θe = 0.6/γ , do not match. In particular, both
the peak frequency and the energy spread do differ in a sizable
way, with a clear underestimation of the beam-divergence
effects when the simplified expression (54) is employed.

In Fig. 10b the relative number of collected photons
NAcc(�θe)/NAcc(�θe = 0) as a function of the beam diver-
gence is reported. The circle and diamond points represent the
data obtained with the detailed formula (53) and the simplified
expression (54), respectively, while the solid line shows a fit
of the detailed data with the function NAcc(�θe)/NAcc(�θe =
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0) = 1/
√

1 + �θ2
e . We note that in this case the simplified

expression (54) gives results that are in good agreement with
the ones obtained with the more sophisticated estimation (53).

3.1.2 Nonlinear regime. To switch in the nonlinear regime,
we consider three cases of Thomson backscattering of pulses
having the same duration of T = 30 fs but different energies,
namely E (1)

L = 0.5 J, E (2)
L = 5 J and E (3)

L = 50 J, at the wave-
length of 832 nm. In order to suppress transverse effects, we
consider pulses having a waist size of w0 = 50 µm, a bit larger
than the previous case. Moreover, we will suppose that a pulse-
shaping technique, producing pulses with flat-top longitudinal
profiles with rise time TR = 6 fs, is employed. The normal-
ized pulse amplitudes with the parameters sketched above are
a(1)

0 = 0.32 (almost linear regime), a(2)
0 = 1 (weakly nonlinear

regime) and a(3)
0 = 3.2 (fully nonlinear regime). Since the rise

time is small, the value of the mean potential should be esti-
mated carefully. Supposing a shape H (ξ ) = sin2(πξ/2TR) for
0 ≤ ξ ≤ TR, we found that ā oscillates with the initial phase
φ0 with an amplitude āmax/a0 = 0.07. This implies that ā can
reach the value of 0.22 for the fully nonlinear case.

The colliding electron beams have transverse emittance
ε⊥

n = 5 mm mrad and they have been focused in a spot of
transverse size σT = 5 µm. To keep the fundamental fre-
quency ωF the same as the linear case, the bunch energies
are left to vary accordingly with the pulse amplitude a0, as

Eb = 40
√

1 + 1/2a2
0 MeV, ranging from � 40 MeV for the

case (1) to � 100 MeV for the case (3). Note that since the
beams have a common value of the transverse emittance but
different energies, they have different angular divergences

�θe � 4ε⊥
n /(σT40

√
1 + 1/2a2

0) too, ranging from 40 mrad
for the case (3) to 100 mrad for the case (1). We stress also
that the transverse momentum induced during the pulse rising
front −ā does not affect the particle dynamics, since it is as-
sociated with an effective incidence angle � 2ā/Eb reaching
the value of 2.2 mrad (fully nonlinear case), a value which is
well below the bunch divergence.

FIGURE 11 Spectral and angular distribution integrated
over the azimuthal angle φ of the Thomson-backscattered
photons produced by the collision between linearly polar-
ized, flat-top pulses of duration T = 30 fs and rise time
TR = 6 fs, energies E (1)

L = 0.5 J and E (3)
L = 50 J, wavelength

λL = 0.832 µm and focused in a spot of size w0 = 50 µm. The
normalized pulse amplitudes are a(1)

0 = 0.32 and a(3)
0 = 3.2,

respectively. The employed electron bunches have energies

E (1)
b = 40

√
1 + a2

0/2 � 41 MeV and E (3)
b = 40

√
1 + a2

0/2 �
99 MeV, transverse emittance ε⊥

n = 5 mm mrad and transverse
size σT = 5 µm. a Distribution for the linear case (1). b Dis-
tribution of the first harmonic for the fully nonlinear case (3).
c Distribution of the first three harmonics for the case (3)

The beam and pulse parameters allow the radial inhomo-
geneity effects to be fully neglected. For the worst case (3), in
fact, both the transverse beam size and the divergence satisfy
Eq. (44) and transverse ponderomotive forces introduce an ef-
fective incidence angle of θTPF � 10−3 mrad that is negligible
with respect to the bunch divergence.

The Thomson backscattered photon distributions have
been estimated by using the SALP approximation in the non-
linear regime and the resulting spectral and angular distribu-
tions integrated over the azimuthal angle φ, for both the pulses
of minimum and maximum energies, are reported in Fig. 11.

In the nonlinear regime both incidence and scattering an-
gles do have a minor effect on the scattered-photon distribu-
tion compared to the linear case, since their natural weight is

now
√

1 + a2
0/2/γ rather than 1/γ . The resulting reduction

of the blurring effects caused by the angular divergence of the
beam is evident by comparing Fig. 11a and b, where the first-
harmonic yield is shown. This is clearer in Fig. 12, where the
normalized spectra obtained by integrating the spectral and

angular distributions up to an angle θMax = ψ

√
1 + a2

0/2/〈γ 〉
with ψ = 0.2(θMax � 15 mrad) are reported.

3.2 Laser–plasma accelerator

The idea of using laser–plasma-accelerated
bunches to produce Thomson-scattered radiation was first an-
alyzed in detail by Catravas et al., who considered bunches
produced either with self-modulated laser wake-field acceler-
ators (SM-LWFAs) or laser wake-field accelerators (LWFAs)
with optically controlled trapping (see [8] and references
therein). The estimations reported in Ref. [8], however, con-
sidered only the linear regime and are based on the simplified
expression (54), which has been proved to be an approxima-
tion of Eq. (53). Recently, Hafz et al. [39] have performed a
two-dimensional (2D) numerical simulation of laser–plasma
interaction in the regime of laser wake-field acceleration
with particle injection induced by the presence of a sharp
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FIGURE 12 Normalized spectral distributions of the Thomson-scattered
radiation produced by three laser and pulse parameters. The dashed line is
obtained with a pulse as in Fig. 11 with energy E (1)

L = 0.5 J (a(1)
0 = 0.32, lin-

ear regime) and a beam of mean energy E (1)
b = 40

√
1 + a2

0/2 � 41 MeV. The

acceptance angle is θ
(1)
Max = ψ

√
1 + a2

0/2/〈γ 〉 with ψ = 0.2. The dash-dotted

line is obtained with a pulse of energy E (2)
L = 5 J (a(2)

0 = 1, weak nonlinear

regime) and a beam of mean energy E (2)
b = 40

√
1 + a2

0/2 � 50 MeV. The
solid line is obtained with the pulse and beam in the full nonlinear regime

E (3)
L = 50 J and a beam of mean energy E (3)

b = 40
√

1 + a2
0/2 � 99 MeV

plasma-density transition [38]. They applied the results in Ref.
[7] to estimate the characteristics of the Thomson-scattered
radiation produced by the interaction of the simulated electron
bunch and a counterpropagating laser pulse.

Here we will report the detailed estimation of the scattered-
photon distribution in the case of Thomson scattering by a
laser pulse and a counterpropagating electron bunch obtained
by a particle in cell (PIC) simulation of laser wake-field accel-
eration with controlled particle injection by a sharp density
transition [40]. We note that our physical conditions of the
laser–plasma interaction are similar to those of Hafz et al.
The sample particles we employed have been obtained by a
PIC simulation, three dimensional in the fields and two dimen-
sional in the coordinate, of the interaction between a 15-fs-
long laser pulse of peak intensity I = 2.5 × 1018 W/cm2 and
a preformed plasma. The electron density of the plasma has a
tailored profile presenting two plateaux separated by a steep
transition. The produced electron bunch has mean energy
about 10 MeV (〈γ 〉 = 20) and remarkably low transverse and
longitudinal normalized emittances ε⊥

n = 0.1 mm mrad and
ε

‖
n = 2 mm keV, respectively. The bunch is also very small,

having transverse and longitudinal dimensions of 1 µm (σT �
0.5 µm) and 3 µm (σL � 1.5 µm), respectively, as shown in
Fig. 13. We note, however, that the angular divergence �θe ≈
100 mrad is not fully satisfactory for linear Thomson backscat-
tering quasi-monochromatic generation of soft X-rays, since
�θe〈γ 〉 � 2.

We consider the scattering process of a flat-top pulse of
energy EL = 5 J, duration T = 30 fs, rise time TR = 6 fs and
wavelength 0.8 µm, interacting with the electron beam just
outside the plasma region. The computation of the scattered-
radiation distribution is performed, as in the former case, with
the SALP formula by summing up the contributions of the

FIGURE 13 Longitudinal phase-space plot of the electron bunch obtained
with a (3D in the fields and 2D in the coordinates) PIC simulation of laser
wake-field acceleration with controlled trapping. The longitudinal and trans-
verse sizes of the beam are about 3 µm and 1 µm, respectively, while the
energy spread is about 5%

sample particles. In the linear regime (w0 = 100 µm, a0 =
0.5) the spectral distribution of the collected radiation within a
scattering angle θMax = 0.5/〈γ 〉 is very large, as was expected
since the angular divergence of the bunch is comparable with
θMax (see Fig. 14a, solid line). Reducing the collecting angle
with ψ = 0.3 does not produce a narrower spectrum (solid
dashed line) because the energy spread is dominated by the
bunch angular divergence effect.

Since the transverse bunch size is so small, tightly fo-
cused beams can be safely employed and a fully nonlin-
ear regime can be achieved with a pulse obtainable with
present-day laser systems. We consider then further con-
figurations in which the laser pulse is focused in a waist
having w0 = 25 µm (see Fig. 14b) with peak amplitude
a0 = 2, and w0 = 8 µm (Fig. 14c) with peak amplitude
a0 = 6. In all the cases, the transverse inhomogeneity ef-
fects are negligible, since with w0 = 8 µm we have σ0/w0 �
0.05 and �θe � [(1 − a2

0/8γ 2
m)/(1 + a2

0/8γ 2
m)](2w0/cT ) �

1.6 rad and θTPF � 0.01 rad.
Results of the computation in the fully relativistic (a0 = 2

and a0 = 6) regime show that narrow spectral distributions
can be achieved even with such a large divergence bunch.
The energy spread for the first harmonics reduced from about
50% with a0 = 0.5 to 18% with a0 = 6 (see Fig. 15 a and b).
Moreover, tunability of the X-ray source can be easily ob-
tained by changing the pulse energy/waist (and thus the pulse
amplitude a0) by taking advantage of the nonlinear red shift
of the fundamental frequency.

4 Summary and comments

In this paper we have presented a comprehensive
analysis of the scattered radiation produced by Thomson
backscattering of a linearly polarized, flat-top and plane-wave
laser pulse by a relativistic electron bunch presenting siz-
able angular divergence. Triggered by the results reported in
Refs. [26–28], which dealt with pulses having a sharp flat-top
profile, we have taken into account the effects of the rising
front of the laser pulse on the particle dynamics for both the
cases of sharp flat-top and smooth flat-top pulses.
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FIGURE 14 Backscattering of laser pulse with wave-
length λ0 = 0.8 µm delivering pulses of energy EL = 5 J
in T = 30 fs onto the electron bunch obtained with a 2D
PIC simulation. Spectral distributions of the collected pho-

tons within the scattering angles θMax = ψ

√
1 + a2

0/〈γ 〉
with ψ = 0.5 (solid line) and ψ = 0.3 (solid dashed line).
Results of the SALP computation for three laser pulse
focalizations are reported. a w0 = 100 µm (a0 = 0.5); b
w0 = 25 µm (a0 = 2); c w0 = 8 µm (a0 = 6). In the linear
regime (a), due to the relatively large beam divergence, we
obtain broad spectra by reducing ψ , too. In the full non-
linear regimes ((b) and (c)), however, a sizable reduction
of the spectral broadening for the fundamental is found
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FIGURE 15 Backscattering of laser pulse with wave-
length λ0 = 0.8 µm, focused in a waist of size w0 = 8 µm
and delivering EL = 5 J in T = 30 fs, onto the electron
bunch obtained with a 2D PIC simulation. a Normal-
ized spectral distributions of the photons in the first
harmonics collected within the scattering angles θMax =
ψ

√
1 + a2

0/〈γ 〉 with ψ ranging from zero to unity (solid

line) and ψ = 0.3 (solid dashed line). b Relative number of
collected photons versus the acceptance normalized angle
ψ

An analytical expression for the scattered-radiation distri-
bution generated by a single particle having a small incidence
angle has been derived in Sect. 1. Among the inclusion of the
pulse rising front effects, our formulation differs from that of
Ride et al. [29], since the scattered distribution is expressed di-
rectly in the laboratory coordinate system, with the possibility
of using it directly to calculate the sum of contributions of the
particles in a bunch. Several approximations have also been
derived, the most useful for applications on RF-gun electron
bunches being the small-angle in the long-pulse (SALP) limit,
both in the linear and nonlinear regimes. Effects of the radial
inhomogeneity of laser pulse amplitude have also been consid-
ered and a posteriori relations stating the validity of neglecting
transverse ponderomotive forces have been clearly stated.

In Sect. 3 the incoherent radiation produced by an electron
bunch was considered. In a linear regime, we presented
a relation (see Eq. (53)) valid in the SALP limit, which
looks different from an analogous relation presented in
Ref. [8]. In particular, we found that the relation in [8] is

an approximation of Eq. (53) valid in the case of scattering
angles smaller than the beam divergence (θMax < �θe).
Useful relations valid in the linear case, involving the energy
spread, the number of collected photons and the collecting
acceptance angle, have also been reported.

Results of the simulations in the nonlinear regime showed
that a sizable reduction of the scattered radiation energy spread
for the fundamental harmonics is achievable for laser pulses
in the full nonlinear regime (a0 � 1). This effect is particu-
larly evident for the case of Thomson backscattering from an
electron bunch, which has been obtained with a PIC simula-
tion of the LWFA with controlled injection, and having a large
angular divergence �θe〈γ 〉 � 2.

We conclude by mentioning that very recently [41–43] the
production of collimated and quasi-monochromatic relativis-
tic electron bunches due to laser–plasma acceleration (but in
a regime different from that reported in [40] and analyzed
before) has been demonstrated by three independent experi-
mental groups.
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