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framework is first developed, which allows a full vector diffraction treatment in the case of general misalignments.
Then, a parametric numerical study is reported, aimed at highlighting the tolerances of both the intensity and
Strehl ratio for small misalignments, for different focusing and off-axis parabola parameters. A set of experimental
measurements aimed at validating the theoretical model is also discussed. © 2016 Optical Society of America
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1. INTRODUCTION

Off-axis parabolic mirrors (OAPs) have now become essential
devices to focus ultrashort (≲100 fs duration) laser pulses
up to relativistic (≳1018 W∕cm2) intensities without the un-
desired nonlinear and dispersive effects induced on the pulsed
beam by transmissive focusing optics [1].

As it is well known, parabolic mirrors fall in the limited class
of optical devices able to focus, in the ray optics approximation,
a parallel beam onto a single point, thus allowing high numeri-
cal aperture optical systems to be developed based upon them
with potentially no aberrations. For this reason, parabolic mir-
rors have been used for a long time for optical and, more
recently, x-ray astronomy [2,3]. Moreover, the use of parabolic
mirrors is being increasingly considered for usage in high res-
olution optical microscopy [4–7].

A general theoretical/numerical treatment aimed at charac-
terizing the e.m. field distribution in the focal plane of a para-
bolic mirror in an on-axis configuration was given by Varga and
Török in [8,9], in the context of optical microscopy. One of
their main conclusions is that high numerical aperture focusing
may lead to strong intensity variations at different positions
across the focal plane. However, although an ideal 4π focusing
is very demanding in terms of optical quality and thus manu-
facturing process, it has been experimentally verified that a con-
focal microscope using a high numerical aperture parabolic
mirror can deliver excellent images with only small deviations
from the calculated ideal case [10,11]. Finally, we mention
here that noteworthy results were obtained, in the context

of confocal microscopy, in terms of small focal spot size, using
radially polarized light beams focused by parabolic mirrors
[12,13]. All of the above applications typically employ para-
bolic mirrors in the on-axis configuration.

As said above, the usage of parabolic mirrors in an off-axis
configuration has enabled the unique properties of ultrashort,
powerful (≳1 TW) laser pulses to be fully exploited in ultra-
intense laser–matter interaction. This allowed novel research
fields to be opened, such as, for instance, the development
of ultrashort x-ray sources and proton/ion acceleration from
laser–solid interactions (see [14] and References therein) or
of laser-driven electron accelerators and secondary sources from
laser–gas interactions (see [15,16] and References therein). In
these cases, off-axis parabolic mirrors with f numbers ranging
from ≳1 up to ≈20–50 are most commonly employed, with
unfocused laser beam transverse size (setting the OAP size)
ranging from a few tens of millimeters for the TW-scale lasers
up to a few hundreds of millimeters for sub-PW to PW scale
systems.

In this paper, we report on a theoretical/numerical work,
based upon a full vector diffraction treatment, aimed at char-
acterizing the structure of a laser beam in the vicinity of the
focal region of an off-axis parabola in the presence of misalign-
ments of the incoming beam, with particular attention to
parabolic mirror configurations typically encountered in the
field of intense laser interaction with matter. In particular,
rather than considering the characterization of the far-field
aberrations, we mainly focus our attention on the achievable
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maximum intensity and energy encircled in the focal spot in the
presence of small misalignments. Our analysis will be also valid
(and a few numerical cases will be discussed) for generic planes
across the focus, in a spatial extent of a few Rayleigh lengths.
In contrast to the case of optical microscopy, a knowledge of
the intensity away from the focus is of a greater importance
in the context of intense laser–matter interaction. In the case
of the laser interaction with a solid target, for example, due to
an amplified spontaneous emission pedestal and/or to the
picosecond prepulse, a pre-plasma can develop in front of the
target surface, leading to the main interaction taking place
slightly before the focal plane. Moreover, in some context, a
slight defocus is intentionally introduced in order to reduce
the intensity and/or increase the spot size [17–19]. Also, in the
context of laser interaction with gas targets, it is not easy to
produce and/or identify a steep density gradient in the gas dis-
tribution, so that the laser pulse actually starts interacting with
the target slightly before getting focused. To our best knowl-
edge, although a vast literature dealing with the optics of
parabolic mirrors exists, in particular, as said above, in typical
configurations used in astronomy and microscopy, a work
aimed at investigating the effects of possible small misalign-
ments on those parameters of interest in the context of high-
intensity laser–matter interaction is still missing.

As a matter of fact, the first paper dealing with the imaging/
focusing properties of off-axis parabolic mirrors dates back to
1979 [20], where the intensity distribution in the focus was
studied in the framework of ray optics. The diffraction pattern
in the focal plane of an OAP mirror was studied in [21], while
a ray-tracing approach was undertaken by Arguijo and Scholl
[22], considering a tilted incident beam as well. A ray-tracing
approach was also used in [23] to calculate the inherent aber-
rations in the case of a perfectly aligned OAP. The e.m. field in
the focal region of an on-axis parabolic mirror used in confocal
imaging of small nanoparticles and single molecules was studied
in [11], where the effects of small misalignments were also con-
sidered; the authors showed that small misalignment angles δ
(of the order of a few πkf , k being the wavenumber and f the
focal length) give rise to a strong coma in the focal region. Such
a conclusion was also drawn in [24], where the intensity dis-
tribution of a TM01 beam focused by a parabolic mirror was
studied in the framework of the Richards–Wolf diffraction
theory. From the experimental viewpoint, a procedure to per-
fectly align an OAP mirror, along with a characterization of the
focal plane aberrations, was reported in [25]. Restricting our
attention to the field of ultraintense laser–matter interaction,
Bahk et al. [26] reported on the characterization and correc-
tions, by means of a wavefront sensor and adaptive mirror, of
the aberrations in the focal plane produced by a high numerical
aperture OAP, aimed at reaching an ultrahigh intensity of the
order of 1022 W∕cm2.

In what follows, we first lay down a general theoretical
framework, based upon the Stratton–Chu vector diffraction
theory [27], for the calculation of the intensity distribution of
a super-Gaussian laser beam focused by an OAP in the presence
of possible misalignments. In other words, we account for the
incoming laser beam direction being not perfectly parallel to
the OAP axis. Afterwards, we consider selected cases of OAP

focusing and misalignments, concentrating our attention on
the effects induced on the maximum intensity and the energy
encircled in the main focal spot. Finally, we report on a set of
experimental measurements aimed at checking the soundness
of the theoretical model.

2. GENERAL THEORETICAL FORMULATION

We consider a Cartesian coordinate system as depicted in
Fig. 1, that is, with the origin in the parent paraboloid
vertex, the z axis lying along the paraboloid axis of symmetry,
oriented such that the focus position is xF � �0; 0; zF �, with
zF � f > 0. Furthermore, the x direction lies in the meridio-
nal plane, that is, the plane of the optical axis and the wave-
vector of a perfectly aligned incident beam at its center (to be
better defined below). The equation of the parent paraboloid
can thus be written as

z � g�x; y� � a�x2 � y2� ≡ s�x; y� · f ; (1)

with a � 1∕4f , f being the parent focal length, and we have
defined the function s�x; y� � a

f �x2 � y2� � �x2 � y2�∕4f 2,
which will be useful in the following. The region of the parent
paraboloid making up the off-axis parabola mirror surface is
identified by the inequality

OAP: �x − dOAD�2 � y2 ≤ d 2; (2)

where dOAD is the so-called off-axis distance (see, for instance,
[28]), and d is the diameter (or, from a practical viewpoint,
the clear aperture). In Section 3 the value of the off-axis
angle will also be used; it can be easily calculated as ϑOA �
dOAD∕�f − ad 2

OAD�.
In order to calculate the field in the region close to the focal

position, we use the vector formulation of the diffraction

Fig. 1. Sketch of the different coordinate systems used throughout
the paper. The origin of the Oxyz system lies in the vertex position
of the parent paraboloid. The O 0x 0y 0z 0 system is obtained from the
corresponding unprimed system by a translation of the origin to
the center of the OAP. The axis z and z 0 are parallel to the direction
of a perfectly aligned beam. In the inset, a misaligned beam and the
corresponding coordinate system are sketched (see text).
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integral given by Stratton and co-workers [27,29]. We will
follow a similar approach to that undertaken in [26] [so that
Eqs. (3)–(10) will be similar to those in that paper], but we
will generalize these calculations to the case of an incoming
beam having a generic direction. Thus, we first calculate the
fields on the OAP surface and then we use these quantities
for calculating the Stratton–Chu integrals, which provide the
electric and magnetic fields at the point xP in the far field:

E�xP� �
1

4π

Z
OAP

�ik�n̂ × B�G

� �n̂ × E� × ∇G � �n̂ · E�∇G�dA; (3)

B�xP� �
1

4π

Z
OAP

�ik�E × n̂�G

� �n̂ × B� × ∇G � �n̂ · B�∇G�dA; (4)

where k � 2π∕λ is the wavenumber, n̂ is the inward normal
to the paraboloid surface (that is, directed from the surface
toward the focal region), and G is the Green function for
the Helmholtz equation

G�x� � G�x − xP� �
eikjx−xP j

jx − xPj
: (5)

The integration is carried out on the surface of the OAP,
identified by the Eqs. (1) and (2). With respect to the original
formulation of the Stratton–Chu integrals, we have dropped
here the additional term involving a line integral along the
OAP contour, since it was demonstrated to give a negligible
contribution to the far field (see [8] and [26]).

Notice that we will be using, throughout the following
reasoning, the so-called “Gaussian” system of units (see, for in-
stance, [29]). We will also be assuming nonmagnetic media,
so that, in the Gaussian system, μ � 1 and B � H. We also
notice that the original Stratton–Chu formulas (3) and (4) have
to be written in terms of H instead of B. Thus, in order to
convert all the formulas of this paper to the SI system of units,
the following two-step procedure may be used: (1) replace B
with H; (2) replace E with

ffiffiffiffiffiffiffiffiffiffi
4πϵ0

p
E and H with

ffiffiffiffiffiffiffiffiffiffi
4πμ0

p
H,

ϵ0 and μ0 being the vacuum electric permittivity and magnetic
permeability.

The electric and magnetic fields appearing in Eqs. (3) and
(4) as boundary conditions on the OAP surface were discussed
by Varga and Török in [8] (see also [26]); starting from the
condition that they are to be considered as the sum of the
incident and reflected fields and assuming a perfect (that is,
100%) reflection, they showed that E and B can be written
as a function of the incident fields Ei and Bi according to

E�x� � 2n̂�n̂ · Ei�x��; B�x� � 2Bi�x� − 2n̂�n̂ · Bi�x��:
On substituting these equations into Eqs. (3) and (4), one thus
finds

E�xP� �
1

2π

Z
OAP

�ik�n̂ × Bi�G � �n̂ · Ei�∇G�dA; (6)

B�xP� �
1

2π

Z
OAP

��n̂ · ∇G�Bi − �Bi · ∇G�n̂�dA: (7)

From Eq. (5) the gradient of G can be easily calculated as

∇G�x� � ik
�
1 −

1

iku

�
G�u�
u

u; (8)

with u � x − xP and u � juj. Moreover, if we use x and y as
parameters for identifying the points on the paraboloid surface,
we can easily calculate the area element and the normal to the
surface:

dA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s�x; y�

p
dxdy; (9)

n̂ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s�x; y�p

0
B@

−x∕2f
−y∕2f

1

1
CA � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s�x; y�p p; (10)

where we have defined the vector p � �−x∕2f ; −y∕2f ; 1�,
which will be useful later.

We now consider an incident beam with a planar wave-
front and a super-Gaussian transverse amplitude profile, to
be specified below. These two assumptions are of course an
approximation of a real laser beam as far as we limit ourselves
to the near-field region, as in a practical real case; we also as-
sume that no wavefront aberration affects the incident beam.
Furthermore, we let the beam propagate at an arbitrary angle
with respect to the paraboloid optical axis. It is then useful to
introduce a new system of coordinates O 0ξηζ oriented with the
beam, and in particular such that (see the inset of Fig. 1):

(a) The wavevector points toward the negative ζ axis direction:
k � −kêζ, with k � 2π∕λ > 0.
(b) The “center of mass” of the transverse field amplitude
profile lies in the ζ axis, that is, at ξ � η � 0.
(c) The origin O 0 lies on the parabola surface at the point
�dOAD; 0; ad 2

OAD� (the OAP “center”).
(d) If the propagation occurs along a direction parallel to the
parabola axis (that is, if no misalignment occurs), the axes ξ, η,
ζ are oriented in the same direction as x, y, z, respectively.

According to a) and b), from the Maxwell equations it fol-
lows that the fields of the incoming beam at a generic reference
plane ζ � ζ0 (located at a distance ζ0 from the parabola center)
can be written, in the O 0ξηζ system, as

E�ξ; η; ζ0� � A�ξ; η��cos δêξ � sin δêη�; (11)

B�ξ; η; ζo� � A�ξ; η��− cos δêη � sin δêξ�; (12)

where we have introduced the angle δ to allow for different
polarizations: δ � 0 corresponds to an incoming beam polar-
ized along ξ (that is, for a perfectly aligned beam, along x).
Furthermore, A�ξ; η� accounts for the beam amplitude. We
assume a super-Gaussian type beam profile, with

A�ξ; η� � A0 exp

�
−
1

2

��
ξ

σx

�
2

�
�
η

σy

�
2
�

n
�
: (13)

The fields on the parabola surface can then be calculated
starting from Eqs. (11) and (12) and considering the optical
path from this plane to the OAP surface at each point. To this
purpose, let us introduce now a new system of coordinates
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O 0x 0y 0z 0 as shown in Fig. 1. It is simply obtained from the cor-
responding unprimed system Oxyz by translating the origin to
O 0. In order to quantitatively define a generic misalignment of
the incident beam with respect to the parabola axis, we now
start from an O 0ξηζ system aligned with O 0x 0y 0z 0 (no misalign-
ment) and perform first a rotation around the η axis (coincident
with the y 0 axis) of an angle ϑy and then a rotation of an angle
ϑx along the new ξ 0 axis (for the sake of conciseness, we have
dropped any prime symbol from the symbols used for the two
rotation angles, as no ambiguity exists as far as the order of
rotations is taken into account). In other words, we first let the
beam rotate around an axis perpendicular to the meridional
plane. It is shown in Appendix A that the electric and magnetic
fields at the point xS � �x; y; a�x2 � y2�� on the paraboloid
surface can thus be written as

Ei�xS� � A�ξ�xS�; η�xS��eikp�xS �q�δ; ϑx ; ϑy�; (14)

Bi�xS� � A�ξ�xS�; η�xS��eikp�xS �r�δ; ϑx ; ϑy�; (15)

with

ξ�xS� � �x − dOAD� cos ϑy − �a�x2 � y2� − ad 2
OAD�� sin ϑy;

(16)

η�xS� � y cos ϑx � �a�x2 � y2� − ad 2
OAD� sin ϑx cos ϑy

� �x − dOAD� sin ϑx sin ϑy (17)

and

p�xS� � ζ0 − �a�x2 � y2� − ad 2
OAD� cos ϑx cos ϑy

− �x − dOAD� cos ϑx sin ϑy � y sin ϑx : (18)

In Eqs. (14) and (15) we have introduced the vectors q
and r, whose components, calculated in Appendix A, are
the following:

qx�δ; ϑx ; ϑy� � cos δ cos ϑy � sin δ sin ϑx sin ϑy

qy�δ; ϑx ; ϑy� � sin δ cos ϑx

qz�δ; ϑx ; ϑy� � sin δ sin ϑx cos ϑy − cos δ sin ϑy; (19)

rx�δ;ϑx ;ϑy� � sin δ cos ϑy − cos δ sin ϑx sin ϑy

ry�δ;ϑx ;ϑy� � − cos δ cos ϑx

rz�δ;ϑx ;ϑy� � −�cos δ sin ϑx cos ϑy � sin δ sin ϑy�: (20)

We have made explicit that they do not depend upon the
point xS , but only upon the angles defining the beam misalign-
ment and the beam polarization.

On substituting these equations into Eq. (6) we finally get

Ej�xP� �
i
λ

Z
OAP

gEj�x; xP�A�ξ�x�; η�x��eik�u�x;xP��p�x��dxdy;

(21)

where the index j stands for x, y, or z and

gEx�x; xP� �
1

u�x; xP�

�
−

y
2f

rz − ry

�

�
�
−

x
2f

qx −
y
2f

qy � qz

�

×
�
1 −

1

iku�x; xP�

�
x − xP

u2�x; xP�
; (22)

gEy�x; xP� �
1

u�x; xP�

�
rx �

x
2f

rz

�

�
�
−

x
2f

qx −
y
2f

qy � qz

�

×
�
1 −

1

iku�x; xP�

�
y − yP

u2�x; xP�
; (23)

gEz�x; xP� �
1

u�x; xP�

�
−

x
2f

ry �
y
2f

rx

�

�
�
−

x
2f

qx −
y
2f

qy � qz

�

×
�
1 −

1

iku�x; xP�

�
z − zP

u2�x; xP�
: (24)

Here z has to be replaced by a�x2 � y2� wherever it appears.
We observe that Eqs. (22)–(24) can be cast into a more com-
pact form as

gE �x; xP� �
1

u
�p × r� � �p · q�

�
1 −

1

iku

�
u
u2

: (25)

The corresponding expressions for Bj�xp� are reported in
Appendix B.

In the following Section, we use the above model to calcu-
late how the maximum intensity and Strehl ratio are affected by
small misalignments for a variety of OAP off-axis angles and
focal lengths. We defer until Section 4 a discussion of a set
of experimental measurements aimed at assessing the validity
of our model.

3. CALCULATION AND DISCUSSION
OF SELECTED CASES

The integrals appearing in Eq. (21) have, as it is easily verified,
no closed form and need to be calculated numerically. In our
case, where incoming beam misalignments are accounted for,
this is a particularly heavy task, due to the number of terms
appearing in Eqs. (16), (17) and (22)–(24). Several numerical
algorithms have been developed to estimate integrals involving
highly oscillating terms [30–33]; in our case a Levin method
was chosen [34]. In particular, since we are interested here
in the calculation of the intensity profile of the beam at the
final plane (from now on, by “final plane” we mean either
the focal or some other plane in the far-field region to be speci-
fied in the following), we calculated the three components of
the electric field provided by Eq. (21) using a Levin method
and then we summed up the squared values. All the calculations
referred to below were carried out assuming a beam with wave-
length λ � 800 nm, polarization along the ξ axis [δ � 0 in
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Eqs. (11) and (12)], and transverse profile as provided by
Eq. (13) with n � 4. We choose these figures as they are typ-
ically encountered in ultrashort/ultraintense laser–matter inter-
action experiments. Furthermore, the extent of the numerical
integration domain was typically taken as 3 × FWHM in both
the x and y directions, being the full width at half-maximum
(FWHM) of the beam to be focused. In all the calculations
discussed here, we consider a beam with FWHM � 10 mm
along both the ξ and η directions [σξ � ση in Eq. (13)].
With the above parameters, the calculation of each field com-
ponent at a given point of the final plane took from a few up to
≈10 s on a single core of a typical desktop CPU (up to 4 cores
were used, in our case, to speed up the calculations).

As an example, Figs. 2 and 3 show the retrieved beam in-
tensity map at the focal plane of an f ∕10OAP with an off-axis
angle ϑOA � 20°, for different misalignment angles ϑx and ϑy
(from now on, since we are not accounting for a time depend-
ence, we will improperly use the term “intensity” to refer to the
electromagnetic energy density). All the maps shown in Figs. 2
and 3 are centered on the position of an ideal ray reflected
from the OAP center (point O 0 in Fig. 1); in other words, on
each map the coordinate (0, 0) corresponds to the point where
this ideal reflected ray would intercept the focal plane. In detail,
Fig. 2 shows, besides the focal spot image of a perfectly aligned
beam, the intensity profile for increasing misalignments around
the x axis, with positive ϑx values up to 3.0° (due to the sym-
metry of the system, the cases with negative ϑx values are
similar). Figure 3 shows, instead, the intensity profiles for

increasing ϑy values, up to 2.5° (for both positive and negative
values). Each 2D intensity map was typically sampled with a
≲λ∕2 resolution (depending on the OAP f number, that is,
on the expected waist size). For instance, each of the maps
shown in Figs. 2 and 3 were sampled with a 0.4 μm resolution;
thus, the number of sampling points for each map was
nsampling ≈ 22500, resulting in a few hours calculation time
on a single-core CPU.

Increasing astigmatism- and coma-like aberrations are
clearly visible in Figs. 2 and 3 as the angles of misalignment
increase; actually, these kinds of aberrations were shown to be
inherent to the off-axis configuration even for perfectly aligned
beams [21,22]. Rather than characterizing the aberrations by
retrieving, for instance, the Zernike coefficients [35], we are
interested here in studying the maximum intensity and the
Strehl ratio as a function of the misalignment angles; here, by
“maximum intensity” we mean the maximum value of the in-
tensity reached in the focal plane. It is worth observing, at this
point, that a treatment of the misalignments based upon a sca-
lar diffraction theory could be sufficient for a study of the
maximum intensity and Strehl ratio, in particular at large f
numbers. As a matter of fact, we mention here that we actually
run some sets of simulations with a beam polarized along η,
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Fig. 2. Intensity distributions in the focal plane for an f ∕10,
ϑOA � 20° OAP, calculated for a perfectly aligned beam (top left)
and for increasing misalignments around the x axis; from top left to
bottom right: ϑx � 0°, ϑx � �1.0° (first line), ϑx � �1.5°, ϑx �
�2.0° (second line), ϑx � �2.5°, ϑx � �3.0° (third line). ϑy � 0° in
all the cases shown. The coordinates u and v are defined in Fig. 1.
Notice the different spatial scales for the perfect alignment case.
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Fig. 3. Intensity distributions in the focal plane for an f ∕10,
ϑOA � 20° OAP, calculated for increasing positive (left column)
and negative (right column) misalignments around the y axis; from
top to bottom: ϑy � �1.0° (first line), ϑy � �1.5° (second line),
ϑy � �2.0° (third line), ϑy � �2.5° (fourth line). ϑx � 0° in all the
cases shown. The coordinates u and v are defined in Fig. 1. Notice
the different spatial scales for the perfect alignment case.
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which resulted in no differences with respect to the cases dis-
cussed in the following. Relying on a scalar theory would both
simplify the equations and allow faster numerical simulations to
be performed. Nevertheless, we believe that the possibility of
studying the polarization patterns, which is outside the scope
of the present paper, provides a solid motivation for a vector
diffraction theory to be available.

As it will be clear in the following, noticeable deviations
from the ideal values of both maximum intensity and Strehl
ratio (that is, the ones achievable with a perfectly aligned beam)
actually result from much smaller angles of misalignment than
those considered in Figs. 2 and 3. In particular, in the following
we will discuss some selected cases with the aim of drawing
some general conclusions about the stability of these values,
under small misalignments, for different OAP parameters such
as the f number and the off-axis angle ϑOA. To this purpose,
we run several intensity map calculations of the kind of those
shown above and then retrieved, from each map, the maximum
intensity (Imax) and the Strehl ratio (SR); each point in the plots
of Figs. 4, 6, and 7 thus corresponds to a full intensity map
calculation. We notice here that, in order to estimate the
Strehl ratio for each misalignment angle pair �ϑx ; ϑy�, we first
calculated the total energy contained into the beam region
where the intensity I�u; v� is greater than 0.1 × Imax and then
divided this value by the corresponding value for the case of no
misalignment �ϑx � 0;ϑy � 0�. A similar convention was used
in [24] (see [35] for a more formal definition).

Figure 4 shows the behavior of Imax and SR in the case
of an f ∕10 OAP with an off-axis angle ϑOA � 20°.
Misalignments around x (ϑy � 0) and y (ϑx � 0) are consid-
ered separately, and shown in the top and bottom line, respec-
tively. The plots corresponding to misalignments around the
x axis are symmetric around ϑx � 0, as it is easily guessed
from Fig. 1 (from now on, for the sake of conciseness, we will
refer to a misalignment around x as an “x misalignment,” and
similarly for y).

The plots show that a ≈20% drop of the maximum inten-
sity occurs for angle values of ≈0.6°, whereas a much smaller
drop (≈7%) is observed in the Strehl ratio over the same range

of misalignment angles. We notice that the misalignment
angles considered here are much smaller than those considered
in Figs. 2 and 3.

In order to assess the dependence of these effects upon the
OAP off-axis angle, we run different sets of simulations (at a
given f number) and we retrieved, for each set, the misalign-
ment angles corresponding to a 10% drop of the maximum
intensity and to a 5% drop of the Strehl ratio (for the sake
of brevity, we will be calling these “critical angles” for the in-
tensity and Strehl ratio, respectively). In the top line of Fig. 5
we plot these angles as a function of the OAP off-axis angle
ϑOA , in the case of a counterclockwise (ϑx > 0) misalignment
around x. As it is clear from Fig. 5, the tolerances of Imax and
SR towards small misalignments quickly decrease as the off-axis
angle ϑOA increases. These plots were fitted with a curve of the
type ϑcrit ∝ 1∕ϑαOA; the retrieved α coefficients in each case are
shown in Table 1, where the values of the α coefficient for y
misalignment (whose plots are not shown for the sake of brev-
ity) are reported as well. These coefficients basically provide a
scaling law for the tolerances of the intensity and Strehl ratio to
small misalignments as a function of the parabola off-axis angle.
We observe that the increase of the sensitivity to small misalign-
ments of both the intensity and the Strehl ratio as a function of
the off-axis angle is faster for misalignment around x than for
misalignment around y.

A set of analogous plots to those of Fig. 4 is shown in Fig. 6
for a smaller f number OAP (f ∕2 against f ∕10) and the same
off-axis angle (ϑOA � 20°). Here it is clearly visible that smaller
misalignment angles, both in the case of x and y misalignments,
are enough to result in similar drops of both Imax and SR than
in the case of the higher f number OAP; this is a consequence
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as a function of the misalignment angle for a misalignment around the
x axis (top line) and around the y axis (bottom line), for an f ∕10,
ϑOA � 20° OAP.
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of the fact that a smaller f number results, at a given off-axis
angle, in a higher astigmatism. In the bottom line of Fig. 5 we
show the dependence of the critical angles for the intensity and
Strehl ratio (that is, we remind, the angles resulting in a 10%
and 5% drop in the Imax and SR, respectively) as a function of
the OAP f number (at a fixed off-axis angle ϑOA � 20°).
Again, this plot corresponds to counterclockwise (ϑx > 0) mis-
alignment around the x axis, while the corresponding plots for
y misalignments are not shown for the sake of brevity. These
plots were fitted with a linear function ϑcrit � a� b�f ∕#�.
Similar trends were found for misalignments around the y axis.
The slope coefficients b for both the x and y misalignments are
shown in Table 1.

Finally, we show in Fig. 7 a set of plots similar to those of
Fig. 4 where the beam transverse profile at a plane placed at a
distance 1 × dR before the focus position is considered (here dR
is the Rayleigh length). As already said in the introduction, the
beam profile at positions different from the best focus is useful
to be known in laser–matter interaction experiments. It is easily
seen from the figure that similar drops of both the intensity and
Strehl ratio are to be expected, due to x or y misalignments, out
of the focal plane too.

4. EXPERIMENTAL TEST OF THE MODEL

In this Section, we will report on a set of experimental mea-
surements aimed at assessing the validity of the model devel-
oped in Section 2. The measurements were carried out at the
Intense Laser Irradiation Laboratory of the Istituto Nazionale
di Ottica of the Italian National Research Council in Pisa, Italy,
where an ultrashort and ultraintense 10 TW laser system is
available for studies in the field of laser-driven particle acceler-
ation and the development of secondary sources (see, for
instance, [36]). In particular, the laser can deliver <40 fs pulses
with up to 450 mJ energy, at a 10 Hz repetition rate. For the
present study, the laser system was operated at very low energy
(≲1 mJ) and focused by means of a long focal length OAP
routinely used for laser wakefield acceleration studies.
In particular, this OAP features an f number close to 11
and an off-axis angle ϑOA ≃ 23.5°.

A sketch of the experimental setup inside the vacuum cham-
ber usually hosting the OAP and the gas target (not shown in
figure) is shown in Fig. 8. For the present set of measurements,
an Ag-coated mirror was inserted after the OAP in front (that
is, upstream) of the target, to send the beam focused by the
OAP to an imaging system made up by a microscope objective
and a CCD, 8-bit ADC camera. The magnification was mea-
sured to be ∼20. The camera pixel size was 5 μm × 5 μm. Both
x and y misalignments were separately introduced (in the case
of the setup shown in the figure, the y axis is normal to the
plane of the figure and the x axis lies on this plane). A typical
image of the focal spot of the beam in the case of a perfect
alignment is shown in the inset of Fig. 8. Since the direction
of the focused beam was expected to change according to the
angle of misalignment considered, the last mirror was used to
bring this direction back to the optical axis of the imaging
system on each shot. Moreover, since noticeable shot-to-shot
fluctuations, of the order of 10% of the laser energy were to be
expected at the low amplification level used, each measurement
was normalized to the effective laser shot energy.
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Table 1. Power (α) Coefficients of the Power Law ϑcrit ∝
1∕ϑα Fitting the Data of the Critical Angles Versus the
Parabola Off-axis Angle (See Top Line of Fig. 5) and Slope
(b) Coefficients of the Linear Function ϑcrit � a � b ×
�f ∕#� Fitting the Data of the Critical Angles Versus the
Parabola f Number (See Bottom Line of Fig. 5)

Quantity α Quantity α

ϑ�0.90Imax�
x 0.94� 0.08 ϑ�0.90Imax�

y 0.86� 0.03

ϑ�0.95SR�x 0.93� 0.07 ϑ�0.95SR�y 0.84� 0.04

Quantity b Quantity b

ϑ�0.90Imax�
x 0.039� 0.0002 ϑ�0.90Imax�

y 0.046� 0.0005

ϑ�0.95SR�x 0.039� 0.0001 ϑ�0.95SR�y 0.049� 0.0001
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Figure 9 shows the experimental results for the maximum
intensity (left column) and the Strehl ratio (right column) in
the case of x (top line) and y (bottom line) misalignments.
The Strehl ratio was calculated as described in the previous sec-
tion. It is worth noting that in this “real” case, the retrieved
value should be more properly defined as a “Strehl ratio
worsening” with respect to the effective Strehl ratio (smaller
than 1) at no misalignment; for the sake of brevity, we will just
use the term “Strehl ratio” in the following.

In order to compare the experimental results with the pre-
dictions of our model, we run numerical simulations with the
parameters corresponding to the used OAP. However, it is to be
noticed here that the ultrashort laser beam used featured a
pretty large bandwidth, roughly spanning the range from 780
to 820 nm. Of course, a thorough treatment of the issue would
require an improvement of our model to take into account the
ultrashort duration and large bandwidth; this is beyond the
scope of the present paper and will be the subject of a future
work. Here, we choose a simpler approach, running two sets of
simulations, each corresponding to the boundary wavelength
of the laser pulse bandwidth, namely 780 and 820 nm. The
shadowed region in the plots of Fig. 9 is thus the region
bounded by the curves corresponding to these two wavelengths.
We observe, by the way, that the lower bound (indicating a
higher sensitivity to misalignments) corresponds to the lower
(780 nm) wavelength. As it appears from the plots, the agree-
ment between the experimental points and the predictions
from our model is rather good, although a pretty large scatter
of the experimental points is to be noticed, in particular in the
values retrieved for the Strehl ratios. This may be partly due to
the limited dynamic range of our CCD camera. Moreover, it is
to be noticed that our calculations strictly hold in the case of
no wavefront aberrations, which is not the case for such a real
beam (for instance, in our case theM 2 value, one of the param-
eters affected by the transverse wavefront, is close to 1.5). This
is, of course, one of the reasons why the Strehl ratio is usually
measured in a rather different way, by retrieving it from trans-
verse wavefront measurements carried out, for instance, using
Shack–Hartmann sensors. However, it is worth pointing out at
this stage that our model can be easily generalized to cope with
beams affected by transverse aberrations; indeed, this can be
done by considering a transverse phase profile on the OAP sur-
face as resulting by an impinging wavefront not perfectly plane.

5. SUMMARY AND CONCLUSIONS

In this paper, a general procedure was outlined to calculate the
degradation of the maximum intensity and of the Strehl ratio
of a beam focused by an off-axis parabolic mirror due to small
misalignments of the initial beam with respect to the parent
parabola axis. In particular, the procedure described here, based
upon the vector diffraction Stratton–Chu formulas, allows the
beam transverse profile at different positions of the focal region
of a not perfectly aligned off-axis parabola to be evaluated
numerically, whence the maximum available intensity and the
Strehl ratio (calculated against a perfectly aligned beam) can be
retrieved.

A formal establishment of the problem in the presence of a
general misalignment was first given, aimed at providing some
useful formulas to be used in the general case. Afterward, the
procedure was used to carry out a sensitivity analysis of both the
intensity and the Strehl ratio for a range of different focusing
conditions. In particular, since this analysis was aimed at high-
lighting, whenever possible, the dependence of the effects of
misalignments upon the OAP parameters, a parametric study
was carried out at different f numbers and off-axis angles and
some final phenomenological relationships have been provided.

Fig. 8. Sketch of the setup used to experimentally validate our
model. In the inset, an image of the perfectly aligned focal spot is
shown.
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Fig. 9. Plots of the relative intensity (left column) and the Strehl
ratio (right column), both measured against the reference value at
no misalignment. Misalignments around x and y are considered in
the top and bottom line, respectively. (Please note that, in order to
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The shadowed regions show the regions bounded by the theoretical
curves corresponding to a beam with wavelength 780 nm (lower
bound) and 820 nm (upper bound).
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This work can be helpful, in particular, in the design of ul-
trashort and ultraintense laser–matter interaction experiments.
Indeed, in this context, very small misalignments as those en-
countered in this paper may easily affect the effective values
of both the intensity and Strehl ratio; hence, a careful account
of those technological issues related to the beam transport and
focusing has to be made, in particular for large scale laser sys-
tems, involving long beam paths and complex setups.

APPENDIX A: FIELDS CALCULATION ON THE
PARABOLOID SURFACE

We will briefly show in the following how the Eqs. (14)–(18),
providing the electric and magnetic fields on the OAP surface,
can be retrieved. We will focus on the electric field, as the cal-
culation of the magnetic field proceeds in a similar fashion.

In order to calculate the quantities appearing in Eq. (11) in
a point on the OAP surface, it is convenient to work in the
system O 0ξηζ, introduced in Section 2. Recalling how the new
system was obtained starting from Oxyz, it is easy to write
down the affine transformation relating the (contravariant)
components of a vector representing the same point in the
two systems:

x�ξηζ� � Rx�ϑx�Ry�ϑy��x�xyz� − x0� ≡ A�x�xyz� − x0�; (A1)

with x0 � �dOAD; 0; ad 2
OAD�, A � Rx�ϑx�Ry�ϑy� and

Ry�ϑy� �

0
B@

cos ϑy 0 − sin ϑy

0 1 0

sin ϑy 0 cos ϑy

1
CA; (A2)

Rx�ϑx� �

0
B@

1 0 0

0 cos ϑx sin ϑx

0 − sin ϑx cos ϑx

1
CA: (A3)

As said in the text, we have dropped here any prime symbol
from ϑx and ϑy, as no ambiguity exists as far as the order of the
rotations is kept into account. We thus consider the electric
field at the generic surface point having coordinates x�ξηζ�S �
�ξS ; ηS ; ζS� obtained from xS � �xS ; yS ; a�x2S � y2S�� by the
transformation [Eq. (A1)]. Looking at Eq. (11), it is easy to
write down the field on the surface as

E�x�ξηζ�S � � A�ξS ; ηS�eikp�x
�ξηζ�
S ��cos δêξ � sin δêη�; (A4)

where p�x�ξηζ�S � is the optical path from the reference plane
ζ � ζ0 to the surface point x�ξηζ�S . Since we assume a propa-
gation in vacuum, this is just the distance between the plane
and the point; taking into account that the beam is propagating
in the negative ζ direction, it can be directly obtained as the
difference between ζ0 and the third component of x�ξηζ�S ,
and carrying out this calculation leads to Eq. (18).

As for the field amplitude A�ξS ; ηS�, it is simply given by
A�ξ; η� as defined in Eq. (13), calculated at the point x�ξηζ�S

[which depends on x�xyz�S through Eq. (A1)], which, after some
cumbersome algebra, leads to Eqs. (16) and (17).

Finally, in order to evaluate the Stratton–Chu integral, we
must express the electric field direction as a function of the base

vectors êx , êy, êz . To this purpose, the base vectors êξ, êη, êζ
must be expressed in terms of êx, êy, êz . One of the ways is, for
instance, to consider that, apart from a translation by x0, not
affecting the directions of the axes unit vectors, the two bases
of Oxyz and O 0ξηζ transform as the covariant components of
a vector, that is, when arranged in a column vector (see, for
instance, [37]), 0

B@
êξ
êη
êζ

1
CA � A−1T

0
B@

êx
êy
êz

1
CA: (A5)

On substituting these relations into Eq. (11), one finally gets
the Eqs. (19) and (20).

APPENDIX B: EXPRESSION OF THE MAGNETIC
FIELD

For the sake of completeness, we provide here the analog of
Eq. (21) for the magnetic field:

Bj�xP� �
i
λ

Z
OAP

gBj�x; xP�A�ξ�x; η�x��eik�u�x;xP��p�x��dxdy;

(B1)
where

gBx�x; xP� �
�
1 −

1

iku

�
1

u2

×
��

−
y
2f

rx �
x
2f

ry

�
�y − yP�

�
�
rx �

x
2f

rz

�
�z − zP�

�
; (B2)

gBy�x; xP� �
�
1 −

1

iku

�
1

u2

×
��

−
x
2f

ry �
y
2f

rx

�
�x − xP�

�
�
ry �

y
2f

rz

�
�z − zP�

�
; (B3)

gBz�x; xP� �
�
1 −

1

iku

�
1

u2

×
��

−
x
2f

rz − rx

�
�x − xP�

�
�
−

y
2f

rz − ry

�
�y − yP�

�
; (B4)

where z � a�x2 � y2�. Similar to the expression for E, the
Eqs. (B1)–(B3) can be written in a compact form as

gB�x; xP� �
�
1 −

1

iku

�
1

u2
�p × r� × u: (B5)
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