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D. Jovanović1,a, R. Fedele2,b, F. Tanjia3,c, S. De Nicola4,d, and L.A. Gizzi5,e

1 Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade, Serbia
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Abstract. A theoretical investigation of the interaction of an ultra-strong and ultra-short laser pulse with
unmagnetized plasma is carried out and applied to the specifications of the Ti:Sa Frascati Laser for Accel-
eration and Multidisciplinary Experiments (FLAME). The analysis is based on the Lorentz-Maxwell fluid
model in the fully relativistic regime taking the pancake approximation. The mathematical model yields
Zakharov-like equations, which gives a satisfactory description of a wide range of laser-plasma acceleration
configurations. It is shown that the pancake structure is unstable in two dimensions (2D) but the collapse
occurs over a distance much longer than the typical active plasma length.

1 Introduction

The strong development of high-energy physics registered
in the last two decades has required that particle accel-
erators have to work at the extreme conditions of lumi-
nosities and beam energy of the order of 1034 cm−2 s−1

and several tens of TeV or more, respectively. To satisfy
these requirements, but keeping at the same time both
the experimental set-up and the accelerating machine as
compact as possible, very intense electromagnetic (e.m.)
fields of about 100 GV/m are needed to manipulate the
bunches of charged particles in appropriate ways (accel-
eration/deceleration, focusing/defocusing, wiggling, etc.).
Unfortunately, the limitations in terms of costs and tech-
nologies, encountered in the use of the present genera-
tion of conventional accelerators, set the maximum accel-
eration gradient to a few tens of MeV/m. To overcome
these limitations, the use of plasmas seems to be very
promising to conceive new acceleration schemes and, in
perspective, also the new, non-conventional, accelerating
machines [1,2].
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To produce e.m. fields in a plasma, charge separations
and electric currents have to be excited by an external ac-
tion. At the present time, on the basis of about 30 years
of the research experience on the new acceleration tech-
niques, the latter can be effectively provided by launch-
ing pulses of radiation [3–6] as well as charged-particle
bunches [7–9] into the plasma.

Recently, the studies of the e.m. pulse propagation in
plasmas have witnessed a rapid growth, in connection with
the wealth of nonlinear effects investigated as well as with
the number of experimental techniques and devices real-
ized at the frontiers of nonlinear optics capable of ultra-
high laser radiation intensities and ultra-short pulse du-
rations. This is testified, in diverse applications, by the
number of very spectacular nonlinear effects observed, as
well as by the physical mechanisms used [10,11]. In some of
the recently proposed plasma-based accelerator schemes,
ultra-short and ultra-intense e.m. pulses are propagating
in a plasma and exciting the ultra-intense plasma fields
[so-called laser wake fields (LWF)] that are following the
laser pulse at its group velocity. This scheme is usually re-
ferred to as laser wake field accelerator (LWFA), and it is
expected to provide ultra-intense acceleration and strong
focusing gradients [1,2] at relatively low cost compared to
conventional accelerators. A good example are the exper-
iments of femtosecond laser pulse propagation, in which
the laser wake field has been excited by ultra-short laser
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pulses to provide ultra-intense plasma electric fields for
plasma-based particle accelerator schemes [12]. Valuable
recent experimental results in this area have shown the ab-
solute feasibility beyond 1 cm acceleration with the record
energy exceeding 1 GeV [13–19].

In general, the interaction between the ultra-short,
ultra-intense laser pulse and the surrounding plasma
consists of the number of electromechanical actions,
that depend on the pulse intensity. In turn, these
actions affect the collective pulse dynamics which is
nonlinear, as well. Consequently, the plasma and the
pulses are strongly coupled. The electromechanical actions
can be longitudinal (self-compression/expansion, self-
modulation, bunch lengthening/shortening, etc.) or trans-
verse (self-focusing/defocusing, beam widening, etc.), but
they have a three dimensional (3D) character, in general.
Usually, these effects provide the physical mechanisms
that may enhance an initially small perturbation in the
beam amplitude, leading to the large variety of instabili-
ties, such as the modulational instability, the filamentation
and the collapse (in the broadest sense, they belong to the
family of coherent instabilities).

When the dispersion and the nonlinearity act so that
they balance each other, very robust structures (the soli-
tons) are formed. Their character is associated with a very
high stability, since they do not change the shape and they
behave like particles when they interact with other simi-
lar structures. Typically, solitons can propagate, without
changing their shape, over macroscopic distances.

Another important aspect of the self-consistent non-
linear dynamics of the large amplitude waves in plas-
mas is the nonlocality. It is typically introduced by the
slow time-scale response of the medium to a large am-
plitude wavepacket, leading to the sort of memory effect.
The spatial nonlocality in the systems governed by the
Zakharov equations leads to a nonlinear Schrödinger equa-
tion, whose nonlinear term differs from the standard cu-
bic one, and is typically expressed as the functional of the
wave intensity I (�r, t) in an integral form, viz.

U (�r, t) =
1
2π

∫
K (|�r − �r ′|) I (�r ′, t) d�r ′, (1)

where the nonlocality function K(|�r−�r ′|) is a kernel that
is provided by the adopted physical model of the self-
interaction.

The effects of the nonlocality in the nonlinear term
of the nonlinear Schrödinger equation, applied to differ-
ent physical areas, have received recently a lot of atten-
tion in the literature [20–33]. The earlier works mostly
dealt with the following three types of nonlocality. The
first is usually referred to as thermal nonlocality, that
describes the effect of plasma heating on the propaga-
tion of electromagnetic waves and also the orientational
nonlinearity of nematic liquid crystals. In this case, K
has the form of the modified Bessel function of the sec-
ond kind K0 and the slow response is governed by a
diffusion-type equation which is valid for a typical spa-
tial diffusion scale that is large compared to the oper-
ating wavelength [26,29]. The second type of nonlocality

can be named as the dipolar nonlocality. It is encoun-
tered in the dipolar Bose-Einstein condensate, where the
nonlocal character of the interatomic potential is due to
a long-range interaction of dipoles. Here K(|�r − �r ′|) =
(1/2π)

∫
d�k [1−√

π k exp(k2) erfc(k⊥)] exp[i�k · (�r−�r ′)].
Such condensate has been realized recently in experiments
with chromium atoms which exhibit a strong magnetic-
dipole moment [34,35]. Finally, the most widely used
model is the rather unphysical, but extremely instruc-
tive, the so-called Gaussian nonlocality [23,30], for which
K(|�r − �r ′|) = exp(|�r − �r ′|2/2). In spite of the fact that
there is no known physical system which can be described
by the exact Gaussian response, this model has served as
the phenomenological example of a nonlocal medium, en-
abling, thanks to its form, an analytical treatment of the
ensuing wave dynamics.

For the above three types of nonlocality, analytical so-
lutions were obtained in the regimes of strong and weak
nonlocality, when the characteristic scale of the nonlo-
cality function was taken to be either much longer than
that of the function

√
I, i.e. ∇ logK � ∇ log

√
I or much

shorter, viz. ∇ logK � ∇ log
√

I. The integrals of the form
equation (1) were evaluated using the partial integration,
and with the accuracy to the first order. The stability
analysis with an arbitrary nonlocality function was per-
formed in reference [20] where it was shown that, in most
cases, the arrest of the perpendicular collapse takes place.
More detailed analyses were performed for Gaussian and
thermal cases [29]. The existence of soliton-like solutions
in the presence of a thermal nonlocality was shown analyt-
ically and various soliton solutions were found in the ther-
mal case [30,31], in two dimensions (2D) and three dimen-
sions (3D), in strong Gaussian limits [21–23], in the strong
thermal limit (so-called Davey-Stewartson regime) [25], in
the weakly nonlocal cases in nonlinear optics [27] and in
the laser-plasma interaction [24].

Nonlocal effects have been theoretically investigated
also in the nonlinear and collective dynamics of a charged-
particle bunch in the conventional high-energy accel-
erators [33] within the context of the Thermal Wave
Model [36–38]. The analysis included the resistive part of
the beam coupling impedance that gave rise to both the
acceleration and the deformation of the particle bunch.
The weak resistive effects slightly change the initial shape
of the given soliton profiles, but an uniform acceleration
occurs due to the nonlocal term [33]. More intense re-
sistive effects produce sensitive distortion as well as the
uniform acceleration of the initial soliton pulse with the
evident reduction of its amplitude. However, for a large
resistive part, the deformation leads to the self-steepening
and eventually to the wave-breaking. In fact, for a very
large resistive part of the longitudinal coupling impedance,
semi-infinite shock-like solutions have been predicted [33].

When the laser propagation in plasmas occurs un-
der the extremely large amplitude conditions, the phe-
nomenon of the saturation of the nonlinearity in the
nonlocal response may take place [39]. An important con-
sequence of the saturable nonlinearity is the stabilization
of the background localized solution in two dimensional
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(2D) problems, that is well known e.g. in the nonlinear
optics. The soliton bistability phenomenon in media with
saturable nonlinearities was found in reference [28].

In synthesis, the broad problem of the plasma acceler-
ation involves two families of processes that are subordi-
nated to each other. The first concerns the nonlinear mod-
ifications of the plasma induced by an e.m. pulse and the
subsequent feedback of the plasma on the pulse itself. This
pair of concomitant processes constitute the self-consistent
interaction of the laser pulse during its propagation in the
plasma, which may assume a nonlocal character. When
the wave amplitudes become extremely large, the nonlin-
ear and nonlocal response may lead to the nonlinearity
saturation that, in turn, may work as a stabilizing factor
for the localized structures. The subordinated family of
processes is the manipulation of an electron bunch, suit-
ably injected into the plasma (external injection) and sub-
sequently accelerated by the ultra-intense plasma fields
(laser wake fields) [40], or violently created by the laser
ponderomotive action that accelerates directly the plasma
electrons to a very high energy within a very short distance
(self-injection) [41].

Recently, the progress of ultra-short and ultra-intense
laser beam driven experiments has become even more re-
markable, thanks to the development of: (i) high qual-
ity ultra short and ultra intense laser pulses that rapidly
opened the possibility to produce electron bunches with
the maximum energy gain up to several tens of GeV within
a few tens of centimeters, by means of the self-injection
mechanism, as demonstrated in the range of different self-
injection experimental configurations [13–19] and planned
for the FLAME laser facility [42–44]; (ii) high-quality
short and intense electron bunches to be used very effi-
ciently for the external-injection mechanisms [45,46].

In this paper, we develop a self-consistent theoreti-
cal model to investigate, both analytically and numeri-
cally, the three-dimensional character of the effects that
are produced by the wake field excitation of ultra-short
and ultra-intense e.m. radiation pulses and the concomi-
tant nonlinear and nonlocal character of the plasma re-
sponse. Since under the action of large radiation intensi-
ties (� 1017 W/cm2), the quiver velocity corresponds to
the relativistic or ultra-relativistic motion of the plasma
electrons (note that for intensities � 1014 W/cm2, the
electron motion is already weakly relativistic), we adopt
the Lorentz-Maxwell fluid model for the plasma in the
general relativistic regime. The latter is self-consistently
coupled with the set of equations governing the modifi-
cation of the medium (plasma) on the time scale that
is long compared to that of the carrier e.m. pulse. We
demonstrate that the nonlinear and nonlocal effects come
mostly from the interaction between the electromagnetic
pump wave with a Langmuir wave, whose frequency is
considerably lower than that of the electromagnetic (laser)
pump. To this end and within a relatively simple model,
we develop an analytical approach (used also for numer-
ical evaluations) that may provide satisfactory physical
interpretations for the purely numerical results obtained
from the usual simulation codes. We use the standard

assumption [3–6,47] that the evolution of the pulse is rel-
atively slow in the reference frame that travels with the
pulse, which greatly simplifies the hydrodynamic equa-
tions for the electrons. In particular, we show that, be-
yond the slowly-varying amplitude approximation, the
above coupled equations are reduced to a non-trivial pair
of Zakharov-like equations. These equations are govern-
ing the self-consistent 3D spatio-temporal nonlinear and
nonlocal evolution of the four-potential and suitably take
into account both the ultra-short longitudinal and trans-
verse spatio-temporal variations of the laser pump ampli-
tude while propagating through the plasma. Our analyti-
cal and numerical investigations are finalized to give new
insights on the feasibility or limitations in the realization
of an efficient plasma acceleration that has been already
tested in preliminary experiments devoted to the diverse
aspects of very high energy gain, very intense focusing
and production of radiation of very small wavelengths.
A great effort in this direction is ongoing also at INFN
(Istituto Nazionale di Fisica Nucleare) within the project
SPARC LAB (SL), devoted to the R&D of plasma-based
new acceleration techniques. The INFN effort is based
on the use of the FLAME (Frascati Laser for Accelera-
tion and Multidisciplinary Experiments) laser which pro-
vides one of the most powerful femtosecond pulsed laser
with 10 Hz repetition rate presently available with a max-
imum power of 220 TW and the maximum intensities ex-
ceeding 1021 W/cm2.

In the next section, we formulate the main assumptions
used to develop the appropriate mathematical model,
such as the plasma and laser characteristics, the ge-
ometry of the propagation and the model adopted for
the plasma + laser system. In order to take into account
different experimental conditions, we define three differ-
ent intensity regimes that actually, for a given maximum
laser power, depend on the transverse beam spot size, L⊥.
In particular, we follow the evolution of a laser pulse in
the form of pancake, i.e. we take that the effective lon-
gitudinal pulse length, Lz, is much smaller than L⊥ (i.e.
Lz � L⊥). In Section 3, we present the basic equations
of our problem. Starting from our system of fluid equa-
tions (Lorentz-Maxwell system) we obtain the system of
two coupled equations for the scalar and vector poten-
tials. This is done by using the conservation law for the
generalized linear momentum. This system of equations is
closed with both the continuity and the motion equations
for the electron fluid. In Section 4, we determine the lead-
ing part of the complete set of fluid equations in terms
of a stationary one dimensional (1D) solution propagat-
ing with the speed of light. In the reference frame moving
at the group velocity, this solution allows us to reduce
our system of fluid equations in the pair of coupled non-
linear partial differential equations for the four-potential.
They describe the spatio-temporal evolution of the mod-
ulated e.m. wave that is coupled with the Langmuir wave
via the nonlinearities that arise from the relativistic ef-
fects. Such representation is valid for all the regimes of
intensity and it plays the role that is more general than
the one played by the Zakharov system of equations.
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Subsequently, in Section 5, we introduce the modulational
representation of the e.m. pulse, i.e. the vector potential
is expressed as a vector amplitude modulating the carrier
plane wave. The Zakharov-like system of equations, de-
scribing the spatio-temporal nonlinear and nonlocal evo-
lution of the pancake-shaped laser pulse, is then obtained
beyond the slowly-varying amplitude approximation and
for arbitrary intensities. Provided that the form of the
laser pulse is a pancake, such pair of equations is valid for
all intensity regimes considered in this paper. In partic-
ular, the three different intensity regimes are further dis-
cussed and characterized in terms of the geometric beam
features, such as the transverse space profile of the laser
beam.

In Section 6, we consider the limiting cases of weak
and moderate intensity regimes, that allow the power ex-
pansion in the nonlinear Poissons’s equation. Such ap-
proximation yields a nonlinear Schrödinger equation with
a reactive nonlocal nonlinear term, that is suitably dis-
cussed and numerically evaluated. The longitudinal non-
local character of the pancake evolution is analyzed first
and consecutively extended to study the 2D nonlinear
and nonlocal evolution of the pulse. We show, in par-
ticular, the existence of the beam self-focusing and fil-
amentation. We follow numerically the 2D evolution of
the laser pulse for times that are comparable with the
transit time of the pulse through the accelerator interac-
tion chamber (∼10 cm) and study the interplay between
the spreading and the collapse (filamentation) of the pulse
in the transverse direction. We show that the pancake is
unstable in 2D, but the collapse is not very fast. While
the envelope of the laser pulse is not much affected by
the collapse, relatively slow transverse contractions of the
electrostatic potential are observed. In addition, the weak
intensity pulses behave similarly to the standard NLS soli-
tons and survive unchanged during a time much longer
than that required for the laser accelerator scheme. So,
within the present preliminary analysis, we do not expect
that the transverse collapse constitutes a critical limita-
tion for the self-injection accelerator scheme under inves-
tigation with FLAME. In Section 7 the pair of coupled
equations given in Section 4 are specialized in the limiting
case of very large intensities associated with the pancake
evolution. Under these extreme conditions, the nonlinear-
ity saturation is taken into account and used to reduce
those pair of equations in the form of a Zakharov-like sys-
tem of equations. In the course of such violent laser-plasma
interaction, the channelling and the cavitation effects are
expected to take place during the laser propagation. Con-
clusions and remarks are finally presented in Section 8.

2 Basic assumptions

Our basic assumptions of the laser are mainly formulated
on the basis of the principal characteristics of the Ti:Sa
laser FLAME [48]. In particular, the laser pulse carries
the energy E = 7 J before compression, which for a com-
pression efficiency of 70% gives a pulse energy of approx-
imately 5 J. The minimum pulse duration is τ ≥ 23 fs

and the maximum power is therefore Wmax ∼ 220 TW,
at the wavelength λ = 0.8 μm, (which corresponds to
ω = 2.36 × 1015 s−1), and repetition rate is νrep = 10 Hz.
It is worth noting that τ = 25 × 10−15 s corresponds
to the pulse length Lz = 7.5 μm, i.e. there are around
10 wavelengths of the laser light within the pulse. Ac-
cording to references [49,50], the plasma density in dif-
ferent experiments where FLAME is employed ranges as
ne = (0.6 − 1) × 1019 cm−3, and even 4 × 1019 cm−3.
The electron density ne = 1019 cm−3 corresponds to the
plasma frequency ωpe = 1.78 × 1014 s−1. Thus, the pulse
duration is roughly τ = 0.7 Tp, where Tp is the plasma pe-
riod Tp ≡ 2π/ωpe = 35.22×10−15 s, while the collisionless
skin depth (which is the wavelength of the natural oscil-
lation mode of the plasma), de ≡ 2πc/ωpe = 10.56 μm is
one order of magnitude longer than the laser wavelength
(λ = 0.8 μm) and close to the pulse length (Lz = 7.5 μm).

Ranging from weak to strong laser intensities, we can
take into account the diverse physical conditions of the
pancake (Lz � L⊥) propagation that correspond to dif-
ferent experimental conditions.

We take that the electric field of the laser light is suffi-
ciently strong for the electrons to achieve relativistic jitter
velocities. In particular, for the maximum laser power of
the order of 220 TW, we consider three different regimes
that are extrapolated from the various experiment pro-
posals available in literature. Namely:

(i) weak intensity regime (WIR), where the maximum
intensity Imax is roughly ranging from 2.5 × 1014

to 2.5 × 1016 W/cm2 [51–53];
(ii) moderate intensity regime (MIR), where the maxi-

mum intensity Imax is roughly ranging from 1.5 ×
1018 to 3 × 1019 W/cm2 [53,54];

(iii) strong intensity regime (SIR), where the maxi-
mum intensity Imax is roughly ranging from 1020

to 2.5 × 1022 W/cm2 [53,55]. This very high inten-
sity regime will be accessible with FLAME only by
means of the phase front correction, that is planned
in the near future, and using very fast focusing optics
in order to reach a 1 μm diameter focal spot.

Note that: for WIR, L⊥ ranges roughly from 0.1 to 1 cm;
for MIR, from 30 to 130 μm; for SIR, from 1 to 16 μm.
However, in the physical conditions of SIR it turns out
that L⊥ and Lz (typically, ∼7.5 μm) would be of the same
order of magnitudes, against the assumption of a pancake
geometry. Actually, to reach the SIR within the same as-
sumtion we have to assume that Lz be reduced to 1/3
of its typical value, i.e. Lz ∼ 2.5 μm. This aspect will be
deepened in Section 7, where the limit of strong intensities
is discussed.

In the FLAME plasma-based accelerator scheme, the
plasma is created in a helium gas jet by the laser ioniza-
tion. A qualitative assessment of the ionization process
can be obtained from the value of the Keldysh parame-
ter Γ =

√
Ui/E , where Ui is the ionization potential and E

is the kinetic energy of the electron quiver motion in the
laser field, E = α2e2E2

0/2 me ω2. Here −e and me are
the electron charge and mass, respectively, E0 and ω are
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the laser electric field amplitude and angular frequency,
and α2 = 1 for a linear polarization, α2 = 2 for a cir-
cular polarization. For small values of the Keldysh pa-
rameter, Γ � 1, the optical field ionization leads to an
almost instantaneous freeing of the electron and plasma
formation, while in the opposite case Γ � 1, the multi-
photon ionization dominates, see the review [56]. For he-
lium, the potentials of the first and the second ionization
are Ui1 = 24.5874 eV and Ui2 = 54.416 eV, respec-
tively. Thus, the Keldysh parameter for a double ioniza-
tion of He, in the MIR (moderate intensity regime) scales
as 0.01/α � Γ � 0.003/α and in the WIR (weak intensity
regime) as 0.1/α � Γ � 1/α. For such large electric fields,
as in the MIR, the ionization occurs instantaneously. This
can be seen in the simple quasi-classical picture of the
optical field ionization [56,57], when the laser field (re-
garded as quasi-static) is described by an electrostatic po-
tential −rE that is additive to the Coulomb potential of
the nucleus. When the potential of the laser field is suffi-
ciently strong, so that the total potential barrier lies be-
low the electron energy level −Ui, the electron is free. The
minimum laser intensity for which such barrier suppres-
sion ionization (BSI) occurs is easily calculated as

IBSI [W/cm2] = 4.00 × 109 Z−2 U4
i [eV], (2)

where Z is the nucleus charge. For helium, the BSI thresh-
old is found to be IBSI = 8.77 × 1015 W/cm2, which is
three to four orders of magnitude smaller than the laser
intensity in MIR, and comparable with that in WIR. How-
ever, a high level of ionization occurs also in WIR, since
the quantum distribution function of the electron allows it
to tunnel under the barrier and leave the atom even if the
intensity is below the threshold. Terawatt-power laser sys-
tems of moderate size can have the electric field strength
above 1010 V cm−1. In such intense fields, the over-barrier
ionization of atoms occurs in atomic time on the order
of 10−17 s [58]. The experiments on propagation of a laser
pulse of moderate relativistic intensity in He of density
suitable for electron acceleration [59], confirmed also by
simulations [60], have shown a rather stable propagation
with weak refractive effects associated with the different
degrees of ionization. In the focal region, ionization driven
effects were limited to the lateral wings of the pulse. The
precursors of the pulse were observed to pre-ionize the
focal region, but they did not trigger propagation insta-
bilities. As a result, an intermediate range of intensities
was established, in which the ionization was too fast to
perturb the propagating pulse, the relativistic effects were
weak, and the ponderomotive effects appeared to be slow.

Finally, we assume that the above laser pump is trav-
elling in an initially-homogeneous, unmagnetized plasma,
where the ions are regarded as infinitely massive, form-
ing therefore a background of positive uniform charge
with number density n0. Within the fluid theory, the
system plasma + laser is described by the Lorentz-
Maxwell system of equations in the fully relativistic
regime. Given the above laser intensities, the radiation
pressure (ponderomotive effect) is much greater than the

kinetic pressure. Therefore, to the ends of the present in-
vestigation, the plasma can be regarded as a cold fluid [61].

3 Basic equations

According to Section 2, starting from the Lorentz-Maxwell
system, it is the most convenient to write the wave equa-
tion, i.e. the equation for the electromagnetic field, ex-
pressing the electric and magnetic fields via the electro-
static potential φ and the vector potential �A, using the
Coulomb gauge, ∇ · �A = 0. Then, the Ampere’s law

∇× �B =
1
c2

(
∂ �E

∂t
+

�j

ε0

)
, (3)

(here �j is the current density), is readily rewritten as

∂2 �A

∂t2
− c2∇2 �A + ∇∂φ

∂t
=

�j

ε0
. (4)

For our purposes, it is more convenient to use only the
component of equation (4) that is perpendicular to the
direction of propagation of the laser beam (which is taken
to be along the z-axis), and the divergence of equation (4)
(i.e. the Poisson’s equation), viz.

∂2 �A⊥
∂t2

− c2

(
∇2

⊥ +
∂2

∂z2

)
�A⊥ + ∇⊥

∂φ

∂t
=

�j⊥
ε0

, (5)
(
∇2

⊥ +
∂2

∂z2

)
φ = − ρ

ε0
, (6)

where ρ is the charge density that satisfies the continuity
equation ∂ρ/∂t + ∇ · �j = 0. The current and the charge
density are calculated as

ρ =
∑
α

qαnα, �j =
∑
α

qαnα�vα, (7)

where qα is the charge of the particle species α, and the
hydrodynamic densities nα and velocities �vα are calcu-
lated from the appropriate hydrodynamic equations. For
simplicity, we take that the characteristic frequency of the
laser light and of the other processes involved is so high,
compared to the plasma frequency, that the ions are essen-
tially immobile. This justifies the assumption taken above
of infinitely massive ions, constituting a neutralizing back-
ground for the electrons, i.e. ni = n0. In other words,
we consider the interaction of high frequency electromag-
netic and Langmuir waves, while the acoustic phenomena
are disregarded. The electrons are regarded as cold, i.e.
the phase velocity of the nonlinear modes involved are as-
sumed to be much higher than the electron thermal veloc-
ity. The same regime is studied also in the standard litera-
ture, see e.g. references [3–6,47,62,63]. Then, the electron
continuity and momentum equations take the form

∂n

∂t
+ ∇ · (n�v) = 0, (8)

(
∂

∂t
+ �v · ∇

)
�p = q

[
−∇φ − ∂ �A

∂t
+ �v ×

(
∇× �A

)]
, (9)
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where, for simplicity, the subscript for electrons has been
omitted and q = −e. Here �p is the electron momentum,
which is related with the electron velocity �v through the
standard relativistic relation

�v =
�p

m0γ
, (10)

where m0 is the electron rest mass, γ is the relativistic
factor, γ = (1 + p2/m2

0c
2)

1
2 , and c is the speed of light.

Using the identities

(�v · ∇) �p = �v× (∇× �p)+ (∇�p) ·�v and (∇�p) ·�v = m0c
2∇γ,
(11)

the electron momentum equation (9) is rewritten as

∂

∂t

(
�p + q �A

)
−�v×

[
∇×

(
�p + q �A

)]
+∇ (

m0c
2γ + qφ

)
= 0.

(12)
For later purposes, we write explicitly the transverse and
the longitudinal components of equation (12), viz.

(
∂

∂t
+ �v⊥ · ∇⊥ + vz

∂

∂z

) (
�p⊥ + q �A⊥

)

− vi∇⊥
(
�pi + q �Ai

)
+ ∇⊥

(
m0c

2γ + qφ
)

= 0 (13)(
∂

∂t
+ �v⊥ · ∇⊥

)
(pz + qAz)

− �v⊥
∂

∂z

(
�p⊥ + q �A⊥

)
+

∂

∂z

(
m0c

2γ + qφ
)

= 0. (14)

4 Dimensionless equations in the moving
frame

Following references [3–6,47,62,63] we consider the solu-
tion that is slowly varying in the reference frame that is
moving with the velocity u in the direction of the z-axis.
Using the dimensionless quantities

�p′ =
�p

m0c
, �v′ =

�v

c
, φ′ =

qφ

m0c2
,

�A′ =
q �A

m0c
, n′ =

n

n0
, u′ =

u

c
,

t′ = ωpet, �r ′ =
ωpe

c
(�r − �ez ut) , (15)

where ωpe is the plasma frequency of stationary elec-
trons, ωpe = (n0q

2/m0ε0)
1
2 , and making use of equa-

tion (7), we rewrite equations (5), (6), (8), (13), and (14)
in the moving frame, viz.

[
∂2

∂t2
− 2u

∂2

∂z ∂t
− (

1 − u2
) ∂2

∂z2
−∇2

⊥

]
�A⊥

+ ∇⊥

(
∂

∂t
− u

∂

∂z

)
φ = �v⊥n, (16)

(
∇2

⊥ +
∂2

∂z2

)
φ = 1 − n, (17)

(
∂

∂t
− u

∂

∂z

)
n + ∇ · (n�v) = 0, (18)

(
∂

∂t
− u

∂

∂z
+ �v⊥ · ∇⊥

)
(pz + Az)

− �v⊥
∂

∂z

(
�p⊥ + �A⊥

)
+

∂

∂z
(γ + φ) = 0, (19)

[
∂

∂t
+ (vz − u)

∂

∂z
+ �v⊥ · ∇⊥

](
�p⊥ + �A⊥

)

− vi∇⊥ (pi + Ai) + ∇⊥ (γ + φ) = 0. (20)

Usually, the solution of the hydrodynamic equations (18)–
(20) is sought in the quasistatic regime, i.e. when the so-
lution is slowly varying in the moving reference frame

∂

∂t
� u

∂

∂z
. (21)

The hydrodynamic equations (18)–(20) remain very com-
plicated and in the classical works [3–6,47,63], they are
further simplified by taking u to be very close to the speed
of light

1 − u � 1, (22)

and assuming an almost 1D (one dimensional) regime

∇⊥ � ∂

∂z
. (23)

Two comments are in order.
First, in references [3–6] the equations are written in

a reference frame moving with the speed of light (u = 1
in dimensionless units). However, with such a choice, an
important dispersive term ∝ (1− u2) ∂2 �A⊥/∂z2 is lost in
the wave equation, which makes the further analysis and
ordering more difficult. Following reference [47] we take u
which is equal to the group velocity of an electromagnetic
wave. For the FLAME laser frequency and plasma density,
the latter is sufficiently close to the speed of light and one
may apply the ordering (22).

Second, the 1D assumption (23) is valid for the per-
pendicular momentum equation (20) under the FLAME
conditions and for all spot sizes. Conversely, it will be
shown below that the quantities associated with the elec-
trostatic components, viz. φ, n,�vz , �pz, and �Az, scale with
the envelope of the laser pulse rather than with the elec-
tromagnetic wave. Thus, the 1D assumption (23) is ap-
propriate for the continuity and the parallel momentum
equations, equations (18) and (19), only when Lz � L⊥
(i.e. in the pancake regime).

For a stationary 1D solution propagating with the
speed of light, setting ∂/∂t = ∇⊥ = 1 − u = 0, the lead-
ing order parts of equations (18)–(20) are obtained in the
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simple form

∂

∂z
[(vz − 1)n] = 0, (24)

∂

∂z
(−pz + γ + φ) = 0, (25)

∂

∂z

(
�p⊥ + �A⊥

)
= 0, (26)

while from ∇ · �A = 0, within the same accuracy, we have

∂Az

∂z
= 0. (27)

Noting that for z → ±∞ we have φ = �A = �v = �p = 0
and γ = n = 1, and using γ = (1 + p2

z + �p 2
⊥)

1
2 , equa-

tions (24)–(27) are readily integrated, yielding

(vz − 1)n + 1 = 0, (28)
− pz + γ − 1 + φ = 0, (29)

�p⊥ + �A⊥ = 0, (30)
Az = 0. (31)

Then, using the definition for γ and equations (28)–(30),
after some straightforward algebra, we obtain the dimen-
sionless charge and current densities as

n =
(φ − 1)2 + �A⊥

2
+ 1

2 (φ − 1)2
, (32)

�v⊥n =
�A⊥

φ − 1
, (33)

which permits us to rewrite our basic equations as

[
∂2

∂t2
− 2u

∂2

∂t ∂z
− (

1 − u2
) ∂2

∂z2
−∇2

⊥ +
1

1 − φ

]
�A⊥

= −
(

∂

∂t
− u

∂

∂z

)
∇⊥φ, (34)

∂2φ

∂z2
=

(φ − 1)2 − 1 − �A⊥
2

2 (φ − 1)2
. (35)

The above equations (34) and (35) constitute a system
of coupled nonlinear equations that describe the spatio-
temporal evolution of a modulated electromagnetic wave,
in the form of a pancake, interacting with a Langmuir wave
via the nonlocal nonlinearities that arise from the relativis-
tic effects, beyond the slowly varying amplitude approxi-
mation and for an arbitrary intensity regime. They can not
be simply regarded as the pair of Zakharov-like equations,
but nevertheless they appropriately describe the paramet-
ric processes involved. Thus, besides the standard non-
relativistic three-wave coupling phenomena (the Raman
scattering), in the relativistic case, in principle, they may
provide also the description of the four-wave processes, di-
rectly related to the modulational instability, soliton for-
mation, etc. However, the actual nonlinear dynamics of

the pulse strongly depends on the physical conditions in
each particular device and can not be generalized. In Sec-
tion 6, we apply equations (34) and (35) to WIR and MIR
obtaining the suitable pair of Zakharov equations. They
are used to describe the longitudinal 1D nonlocal response
associated with the pulse dynamics that is then extended
to the 2D nonlocal response. Equations (34) and (35) are
then specialized to SIR of the pancake in Section 7.

We note that the nonlinear term in the wave equa-
tion (34), �A⊥/(1−φ), tends to zero for very large Langmuir
electrostatic potential. Thus, essentially different behavior
is expected in the moderate and large intensity regimes,
φ � 1 and φ � 1, respectively. Intuitively, we expect
that this condition coincides with the similar condition
for the laser intensity, �A⊥

2 � 1 and �A⊥
2 � 1. It will

be shown below that with the present power of FLAME,
in most experimental setups we have �A⊥

2
< 1, and we

can take the pulse to have a moderate intensity. Only in
the case of strong focusing, the condition of large inten-
sity ( �A⊥

2 � 1) is satisfied, but such small spot size is not
used in the accelerator scheme that is of our primary inter-
est here. Furthermore, as we have already mentioned, in
the latter case the longitudinal and transverse scales of the
pulse are comparable, and the simple 1D approximation,
equations (23)–(27) is not applicable.

5 Modulational representation and scalings

In the case of moderate intensities, we seek the solution of
the wave equation in the moving frame (16) in the form
of a modulated electromagnetic wave, viz.

�A⊥ = �A⊥0 e−i[ω′t−k′(z+ut)] + c.c., (36)

where the dimensionless frequency ω′ and the dimension-
less wavenumber k′ are defined as

ω′ =
ω

ωpe
, k′ =

ck

ωpe
=

de

λ
, (37)

where ω, k, and λ are the frequency, the wavenumber,
and the wavelength of the electromagnetic laser wave, re-
spectively. They satisfy the linear dispersion relation of
electromagnetic waves, ω =

√
c2k2 + ω2

pe, whose dimen-
sionless version has the form

ω =
√

k2 + 1. (38)

For simplicity, hereafter, we drop the primes. We adopt u
to be equal to the group velocity of the electromagnetic
wave

u =
dω

dk
=

k

ω
, (39)
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which permits us to rewrite the wave equation (16) and
the Poisson’s equation (17) as

2 Re

{
e−i(t/ω−kz)

[
2i ω

∂

∂t
− ω2 ∂2

∂t2
+

(
k

∂

∂t
+

1
ω

∂

∂z

)2

+ ∇2
⊥ − φ

1 − φ

]
�A⊥0

}
=

(
∂

∂t
− k

ω

∂

∂z

)
∇⊥φ,

(40)

∂2φ

∂z2
=

(φ − 1)2 − 1 − �A2
⊥

2 (φ − 1)2
. (41)

The pair of equations (40) and (41) can be regarded as
a sort of generalized Zakharov system governing the en-
velope evolution of the laser for the pancake geometry
beyond the slowly varying amplitude approximation.

Under the typical laser-plasma acceleration conditions
under investigation with the FLAME laser as listed in Sec-
tions 1 and 2, the dimensionless frequency and wavenum-
ber of the laser light are relatively large

ω ≈ k � 12. (42)

Likewise, the spatial derivative in the direction of propa-
gation is estimated as

∂ �A⊥0

∂z
∼

�A⊥0

Lz
, (43)

where Lz = τc = 7.5 μm is the pulse length, whose dimen-
sionless value, see equation (15), is L′

z = τωpe = 4.46.
In the numerical simulations for MIR [49], a plasma
density almost 50 times smaller plasma density was
used (ne = 1.5 − 2.5 × 1017 cm−3), which corresponds
to L′

z = 0.7 and ω′ = 100.
With such small plasma density (i.e. with such large

value of the parameter ω), the laser pulse tends to self-
organize into a standard NLS (nonlinear Schrödinger) soli-
ton with a linear phase, while the effects of a parabolic
phase (often referred to as “the chirp”) could be observed
only for much larger laser intensities.

Requesting that, in the wave equation (40), the terms
describing the temporal evolution of the envelope �A⊥0 and
its spatial evolution in the direction of propagation are of
the same order, we have (in dimensionless quantities (15))

ω
∂ �A⊥0

∂t
∼ 1

ω2

∂2 �A⊥0

∂z2
∼ 4 × 10−4 �A⊥0

� k

ω

∂2 �A⊥0

∂t ∂z
∼ 8 × 10−6 �A⊥0

� ω2 ∂2 �A⊥0

∂t2
∼ 16 × 10−8 �A⊥0 . (44)

Under these conditions, the 1D approximation in the hy-
drodynamic equations (18)–(20) is also justified. Likewise,
from the first three terms in equation (44) we find that the
envelope is slowly varying in time

∂ �A⊥0

∂t
∼

�A⊥0

ω3L2
z

∼ 2.42 × 10−6 ω �A⊥0 � ω �A⊥0 . (45)

The second derivative in time in equation (40) becomes
relevant only in the case of a collapse, i.e. if the longitu-
dinal size of the pulse becomes comparable to the laser
wavelength, ∂ �A⊥0/∂z ∼ k �A⊥0 . We also note that, under
the same conditions, the regimes of intensity defined in the
Section 2 can be now expressed in terms of the following
mathematical conditions:

(i) ∇2
⊥ �A⊥0 � (

1/ω2
)
∂2 �A⊥0/∂z2 corresponds to WIR;

(ii) ∇2
⊥ �A⊥0 ∼ (

1/ω2
)
∂2 �A⊥0/∂z2 corresponds to MIR;

(iii) ∇2
⊥ �A⊥0 � (

1/ω2
)
∂2 �A⊥0/∂z2 corresponds to SIR.

However, for a fully 3D pulse, realized in the SIR, our
equations (40) and (41) are applicable only if Lz is re-
duced in such a way to satisfy the pancake condition,
i.e. Lz � L⊥.

From the Poisson’s equation (41) one can easily see
that for a modulated electromagnetic wave (36), due to the
presence of the term �A 2

⊥ , the electrostatic potential con-
tains a slowly varying component and a second harmonic,
∝ exp[−2i(t/ω − kz)]. Thus, for a slowly varying ampli-
tude (see condition (45)), the right-hand-side of the wave
equation (40) is nonresonant and can be neglected, except
in the case of a collapse, when both ∂ �A⊥0/∂z ∼ k �A⊥0

and ∂ �A⊥0/∂t ∼ ω �A⊥0 . However, in the case of a collapse
it is not possible to use the 1D approximation (23) in the
hydrodynamic equations (18)–(20), and the relatively sim-
ple model equations (40) and (41) are not applicable. For
the same reason, we can neglect the second harmonic as
nonresonant, also in the Poisson’s equation (41). Partic-
ularly simple case is that of a circularly polarized wave

�A⊥ = A⊥0

�ex + i�ey√
2

e−i[ω′t−k′(z+ut)] + c.c., (46)

when we have �A 2
⊥ = |A⊥0 |2, i.e. the second harmonic is

absent. Thus, in the absence of a collapse, our basic equa-
tion are simplified to

[
2i ω

∂

∂t
+

1
ω2

∂2

∂z2
+ ∇2

⊥ − φ

1 − φ

]
A⊥0 = 0, (47)

∂2φ

∂z2
=

(φ − 1)2 − 1 − |A⊥0 |2
2 (φ − 1)2

, (48)

where for a circularly and a linearly polarized wave we
have �A⊥0 = (A⊥0/

√
2)(�ex + �ey), and �A⊥0 = A⊥0 �ex, re-

spectively. Then, denoting by Amax the maximum ampli-
tude of A⊥0 , it is easy to see that, for circularly polarized
waves, the maximum quiver velocity νmax ≡ Amax/

√
2 is

given by

νmax =
e

m0c2
√

2π3ε0

√
Wmax

L⊥
∼ 6 × 10−5

L⊥
, (49)

where L⊥ is in meters. According to the definitions
given in Section 2: νmax ∼ 6.3 × 10−2 − 6.3 × 10−3 for
WIR; νmax ∼ 2.1 − 0.5 for MIR; νmax ∼ 63 − 4 for SIR.
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6 Weak and moderate laser intensities

For WIR and MIR, it is justified to assume (at least qual-
itatively) a small electrostatic potential, φ � 1 (which
in dimensional quantities corresponds to φ � m0c

2/e =
0.51 × 106 V), and expand the nonlinear terms in equa-
tions (47) and (48). Thus, for a weak and moderate inten-
sity regimes, we have the following simplified equations

[
2i ω

∂

∂t
+

1
ω2

∂2

∂z2
+ ∇2

⊥ − φ

]
A⊥0 = 0, (50)

(
∂2

∂z2
+ 1

)
φ = −|A⊥0 |2

2
. (51)

As the perturbation of the electron density, for the pan-
cake structures, can be expressed from the Poisson’s equa-
tion as n − 1 = −∂2φ/∂z2 � 1, we note that, owing to
such small density perturbation, both the WIR and MIR
can be attributed as “linear regimes”, defined in refer-
ence [51], p. 6 (see also figure 3 in Ref. [64]), in which our
“quasistatic approximation” holds and a very detailed de-
scription of the nonlinear dynamics can be achieved within
the applied semi-analytic model [1–6,47,62,63].

For the laser pulses that are much longer than the col-
lisionless skin depth, de, one might set ∂2φ/∂z2 → 0 in
the Poisson’s equation (48), which after the substitution
in equation (50) gives rise to a standard cubic nonlin-
ear Schrödinger equation. Such regime was studied exten-
sively in reference [47]. However, under the plasma accel-
eration conditions under consideration here [48,59] listed
in Section 1, the normalized pulse length, which is here
defined as ratio between Lz and de, is ∼ 1, and conse-
quently ∂2φ/∂z2 ∼ φ/L2

z ∼ φ. This is particularly true for
the moderate intensity regime [49]. Under such ordering, it
is convenient to introduce the rescaled quantities t → ω3t,
�r⊥ → ω�r⊥, φ → φ/ω2, and A⊥0 → A⊥0/ω, when the
above equations are rewritten as

(
2i

∂

∂t
+

∂2

∂z2
+ ∇2

⊥ − φ

)
A⊥0 = 0, (52)

(
∂2

∂z2
+ 1

)
φ = −|A⊥0 |2

2
. (53)

The inhomogeneous linear equation (51) is easily solved
in the form of a convolution, viz.

φ (z, t) =
cos z

2

∫ z

z1

dz′ sin z′ |A⊥0 (z′, t)|2

− sin z

2

∫ z

z2

dz′ cos z′ |A⊥0 (z′, t)|2 , (54)

where z1 and z2 are arbitrary initial positions.
First, we note that there exists a symmetric solution,

which can be cast in the standard form of a nonlocal re-
sponse, viz.

φ (z, t) =
∫

d3�r ′ R (|�r − �r ′|) |A⊥0 (�r ′, t)|2 , (55)

where

R (|�r − �r ′|) = −1
4

δ |x − x′| δ |y − y′| sin |z − z′| ,

and the integration is performed for the entire space. It
is interesting to note that, in the above, the nonlocality
function R is not localized, in contrast to the standard
examples of the nonlocal response, discussed in Section 1.

Obviously, the solution (55), that can be conveniently
rewritten as

φ (z, t) = −1
4

∫
dz′ sin |z − z′| |A⊥0 (z′, t)|2 , (56)

is symmetric if |A⊥0 | is an even function of z, i.e.
|A⊥0(z, t)| = |A⊥0(−z, t)| ⇒ φ(z, t) = φ(−z, t).

6.1 1D longitudinal evolution of the pulse

It is worth noting that our equation (55) features the non-
locality only in the direction of propagation (i.e. in the
direction of the z-axis), which is due to the effective 1D
nature of the hydrodynamic equations in the regime when
the perpendicular spot size is larger than the pulse length.
Conversely, in the SIR, the hydrodynamic equations are
much more difficult to solve and, apart from other com-
plicacies, one may expect a full 3D nonlocal response of
the pancake.

However, such nonlocality analyses are not relevant for
our problem of propagation of a laser pulse in a nonlinear
medium. Our problem is strongly asymmetric, i.e. virtu-
ally no response is expected to occur in front of the pulse.
The solution (54) that is driven by the laser pulse, i.e. the
one that is equal to zero in front of the pulse, has the form

φ (z, t) =
1
2

∫ ∞

z

dz′ sin (z − z′) |A⊥0 (z′, t)|2 . (57)

For a localized pulse in the vector potential, the solu-
tion (57) has the form of an oscillating wake. The am-
plitudes of the leading pulse-like structure and of the
wake in the electrostatic potential, are determined by the
width of the laser pulse. As a simple model, we have
calculated the non-selfconsistent electrostatic response φ
to Gaussian wavepackets, in the form |A⊥0(z)|2 =
(1/2L) exp(−z2/2L2), neglecting the feedback of the po-
tential φ to the laser propagation. The solutions are dis-
played in Figure 1. We note that the electrostatic response
(i.e. the form of the oscillating wake) strongly depends on
the width of the laser pulse. If the width of the pulse
is comparable to, or smaller than, the wavelength of the
wake, L ≤ 1, the wake is an almost purely sinusoidal func-
tion, existing only behind the laser pulse. If the laser pulse
is somewhat larger than the wavelength, L > 3.5, the wake
almost disappears and the electrostatic response is a single
potential maximum that (almost) coincides with the en-
velope of the laser pulse. Already in the early paper [65]
a nice study of the excitation of an oscillating tail was
presented.
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Fig. 1. (Color online) The electrostatic potential −φ (black line), found as the solution of equation (53) driven by a laser pulse
with the Gaussian shape. The square amplitude of the vector potential (red line) is taken as |A⊥0(z)|2 = (1/2L) exp(−z2/2L2),
with different dimensionless pulse widths ranging from 1 to 5.
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Fig. 2. (Color online) The evolution of a moderately focused laser pulse. The laser amplitude a = |A⊥0 | (black), the phase
θ = arg A⊥0 (blue) and the electrostatic potential φ (red) are obtained as the numerical solutions of equations (52) and (53) in
the 1D regime ∇⊥ → 0. The initial condition is solitonlike, i.e. A⊥0(z, 0) = 2

√
C1 exp(i δk z) sech

(√
C1 z

)
, with δk = −0.5 and

with a larger amplitude, C1 = 5.75.

Obviously, in the strongly nonlinear regime when in
equation (47) we have φ ∼ 1, the solution must be self-
consistent. In other words, one must account for the feed-
back from the electrostatic wake (which is a spatially ex-
tended structure) to the electromagnetic pulse (which is
localized in the direction of propagation). The conditions
for the coexistence of such localized and extended compo-
nents will be studied below.

The self-consistent nonlinear response in the moderate
intensity regime and in the 1D limit was found by a numer-
ical solution of equations (50) and (51), taking ∇⊥ = 0.
The results are displayed in Figure 2, in which we follow
the temporal evolution of a pulse with the moderate in-
tensity and with the initial solitonlike profile A⊥0(z, 0) =
2
√

C1 exp(i δk z) sech
(√

C1 z
)
, with C1 = 5.5. The ob-

served behavior was considerably different than that of the
weak intensity pulses. The amplitude very rapidly dropped
to less than 1/2 of its initial value and continued to reduce,

at a slower rate. Simultaneously, the pulse spread in the
longitudinal direction and obtained a highly asymmetric
shape – steep on the rear side and very gentle on the
front side. The maximum of the pulse propagated back-
wards, as governed by our choice of a negative parame-
ter δk = −0.5, but it was spreading so fast that its rear
edge was actually moving forward. The phase of the laser
amplitude, arg A⊥0 , was found to be an approximately
quadratic function of z that did not propagate (in the
moving frame) along z. Instead, it was spreading for larger
times. Such behavior is typical for the chirped solitons. As
the soliton velocity, in the case of linear phase, is propor-
tional to the gradient of the phase, the observed spatial
spreading of the chirped structures can be attributed to
the change of sign of dθ/dz at z ∼ 6.

In general, we may say that the solutions described
here and in the preceding section are characterized by
a chirp proportional to their peak power. Such chirp
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Fig. 3. (Color online) The evolution of the envelope of a weak intensity regime FLAME laser pulse, found as the numerical
solution of equations (52) and (53) in the 2D regime ∇2

⊥ = ∂2/∂x2. The initial condition was adopted in the form of an unchirped
NLS soliton, that is modulated in the perpendicular direction by a Gausssian, A⊥0(x, z, 0) = 2

√
C1 exp(−x2/2L2

x) exp(i δk z)
sech (

√
C1 z), with Lx = 25, C1 = 0.07, and δk = −0.5. The initial electrostatic potential was adopted to be zero, φ (x, z, 0) = 0.

dependence was observed earlier for the pulses in optical
fibers near linear resonances [66].

6.2 Evolution of the pulse in two dimensions:
self focusing

First, we have studied the 2D evolution of the cou-
pled laser pulse/wakefield structure in the weak intensity
regime, using the small-amplitude 1D solution as the ini-
tial condition. In the perpendicular direction, we artifi-
cially introduced a Gaussian shape of the pulse, whose
characteristic spatial scale was adopted to be roughly 6−8
time longer than the pulse length in the z-direction. For
simplicity, we sought the solution in Cartesian coordi-
nates, ∇2

⊥ = ∂2/∂x2. These calculations were performed
on a standard personal computer, using the numerical
method of lines with 64×64 points. Such, relatively small,
resolution was sufficient to reveal the main features of
the 2D evolution and to follow the pulse for times longer
than t = 60 in normalized units, during which the pulse
travels approximately 17 cm in the laboratory frame.
This is almost two times longer than the plasma length
of 9.88 cm, quoted in reference [49]. The results are dis-
played in Figures 3 and 4. We found that a weak intensity
structure is unstable in 2D, but the collapse is not very
fast. We observed only a relatively slow transverse con-
traction for t > 48, which was different from what one
expected intuitively. The simulations revealed that the
velocity of propagation has the minimum in the centre.

This is contrary to the expectation that a very strong
laser pulse would push out all the electrons, so that the
pulse, in the centre, propagate almost in a vacuum, by the
speed of light. Instead, we have observed that the initial
pancake folds, with the wings moving forward while the
central part is falling back, obtaining a V-shape at the
time t ∼ 24. For very large times, the oscillating wake of
the structure collapsed and disintegrated into a sequence
of filaments in the z direction, whose longitudinal and
transverse dimensions were of the same order and con-
siderably smaller than the initial length of the pulse.

We studied also the 2D evolution in a moderate in-
tensity regime, adopting the initial condition in the form
of a unchirped NLS soliton with C1 = 5.5, that is prop-
agating backwards with δk = −0.5 (i.e. the same param-
eters as in the 1D case displayed in Fig. 2). We followed
its evolution for a longer time than in the 1D case, un-
til t � 15. During this time, the pulse travels approx.
4.5 cm, which is about half the length of the interaction
chamber. The results are displayed in Figures 5 and 6.
The folding of the pancake-like pulse and the creation of
a V-shape was observed after t ∼ 9, which is considerably
earlier than in the weak intensity regime. Virtually no
perpendicular contraction was observed for t ≤ 15, while
the longitudinal stretching due to the negative chirp was
similar to that observed in the 1D case. The related di-
minishment affected mostly the laser envelope, while the
electrostatic potential still featured a sizable amplitude;
the depth of its first minimum was more than 50% of
its largest value, achieved shortly after the launch of the
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Fig. 4. (Color online) The evolution of the electrostatic potential produced by a weak intensity regime displayed in Figure 3.

pulse. The potential minimum obtained a V-shape in the
x-z plane, but its cusp was somewhat broader than that
of the weak intensity structures.

7 Regime of very large intensities

Here we want to outline some important aspects relevant
for the near-future LWF-based experiments.

First of all, we observe that it is possible to reach
the high intensity regime keeping satisfied the condi-
tion Lz � L⊥, i.e. preserving the applicability of the pan-
cake approximation (see Sect. 4). We expect that, in the
near future, it might be technologically feasible to reduce
the “pancake thickness” Lz to ∼ 1/3 of its present value
reached in high-power lasers. In the case of FLAME, this
corresponds to the reduction of Lz from almost 10 μm
to 2 − 3 μm. Then, keeping the same maximum laser
power Wmax (for FLAME it is ∼220 TW), we may also
focus the beam to ∼1/3 of the spot size that is presently
used in the wakefield acceleration schemes with moderate
laser intensities (for FLAME, this corresponds to the re-
duction of L⊥ from 30 μm to 10 μm). In such a way, we
reach the strong intensity regime with a pancake-shaped
pulse (i.e. the pulse length is still much smaller than its
width). Within such ordering of the laser power and pan-
cake geometry, our equations (47) and (48) can be applied
also in the strong intensity regime.

Another important aspect is related to the saturation
of the nonlinearity in the nonlocal response and the sub-
sequent stabilization of localized structures. We readily
note that in the regime |φ| � 1 the nonlinear term is satu-
rated. However, for such large amplitudes, using the rep-
resentation of a modulated wave, equation (36), we find

that the relative scaling of the terms on the left-hand-
side of equation (40) is fundamentally different than in
the case of moderate amplitudes. Obviously, the nonlin-
ear term on the right-hand-side of equation (47) appears
to be much larger than the linear terms, viz. φ/(1 − φ) �
1 � ω (∂/∂t) ∼ (1/ω2)(∂2/∂z2). In other words, the or-
dering (44) that is the basic assumption used in the deriva-
tion of the model equation (40) breaks down in the large
amplitude regime. An appropriate scaling is obtained if we
take the velocity u to be equal to the speed of light, u = 1,
and that the frequency and the wavenumber satisfy the
dispersion relation of the electromagnetic waves in vac-
uum, ω = k. Then, from equations (34) and (35), drop-
ping the nonresonant (second harmonic) terms, we readily
obtain:
[

∂

∂t

(
2i ω +

∂

∂t
− 2

∂

∂z

)
+ ∇2

⊥ − 1
1 − φ

]
A⊥0

≈
(

2i ω
∂

∂t
+ ∇2

⊥ +
1
φ

)
A⊥0 = 0, (58)

∂2φ

∂z2
=

(φ − 1)2 − 1 − |A⊥0 |2
2 (φ − 1)2

≈ φ2 − |A⊥0 |2
2φ2

, (59)

where we have expanded the nonlinear terms in the small
quantity 1/φ � 1 and used the assumption of the weak
modulation ω � max(∂/∂t, ∂/∂z).

We note from equation (58) that the regime of very
large intensities is physically different from that of the
moderate intensities. The wave equation (58) describes
an electromagnetic wave propagating in vacuum, with a
“small” nonlinear term ∝ 1/φ added. This is due to the
fact that the electron density perturbation, according to
equation (32), is very large δn = n − 1 = O(1). This
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Fig. 5. (Color online) The evolution of the envelope of a laser pulse with the amplitude typical for the accelerator scheme
under investigation here (referred to in the text as a moderate intensity regime). All parameters are the same as in Figure 3
except the amplitude, which is adopted as C1 = 5.5.

corresponds to the creation of vacuum channels in the
plasma, that is well known from numerical simulations.
However, for a 2D or a full 3D picture in the large ampli-
tude regime, one needs to use the general equation (40),
since the intensity φ decreases radially, and close to the
edges of the beam we are back to the φ � 1 regime. Ob-
viously, such task is numerically more demanding, and it
will be considered separately, in a forthcoming publica-
tion. Furthermore, huge electric fields arising from such
electron density perturbation, may affect also the ions,
whose dynamics also needs to be taken into account.

8 Conclusions and remarks

In this paper, we have theoretically studied the self-
consistent interaction between an ultra-strong, ultra-short
laser pulse in the form of a pancake (Lz � L⊥) and
an unmagnetized plasma with the ions taken to be im-
mobile. Within the framework of the laser wake field
excitation, our study has been mainly referred, as a con-
crete example, to the FLAME laser which is currently em-
ployed as a facility in the Frascati National Laboratories
of INFN for different plasma-based acceleration projects
including the self-injection case. For the maximum laser
power Wmax ∼ 220 TW, we have considered three differ-
ent regimes of the laser intensities, corresponding to dif-
ferent transverse spot sizes of the pancake, respectively.
Since in our physical problem the laser intensity ranges
from 1014 to 1020 W/cm2, the motion of the plasma elec-
trons has been assumed to be in the fully relativistic
regime. In addition, due also to the concomitant role of the

high intensity and the high gradient of the laser field pro-
files, the radiation pressure effects (ponderomotive force)
fairly overcome those arising from the electron kinetic
pressure, so that the plasma can be regarded as being
cold. We have adopted a fluid plasma model, described by
the relativistic Lorentz-Maxwell equations, from which we
have derived and solved numerically the nonlinear equa-
tions that describe a plasma penetrated by an ultrashort,
ultrastrong laser pulse, in the fully relativistic regime. We
used the numerical method of lines and the calculations
were performed on a standard PC. To derive those equa-
tions, we have first determined the leading order part of
our set of fluid equations in terms of a stationary 1D solu-
tion propagating with the speed of light. We have showed
that, in the reference frame that is moving at the group ve-
locity of the laser light, this solution have allowed us to re-
duce our system of fluid equations in a pair of coupled non-
linear partial differential equations for the four-potential.
They describe the spatio-temporal evolution of the mod-
ulated e.m. wave that is coupled with the Langmuir wave
via the nonlinearities arising from the relativistic effects.
A Zakharov-like system of equations has been obtained
beyond the slowly-varying amplitude approximation. It
consists of a parabolic wave equation governing the non-
linear high-frequency propagation of A⊥0 that is coupled
with the slow plasma response equation through the elec-
tric potential variation that, in turn, is driven by A⊥0 .
In the weak and moderate intensity regimes, a nonlin-
ear Schrödinger equation with a reactive nonlocal non-
linear term has been obtained and numerically studied
in both 1D and 2D cases. The evolution of the pancake
has been followed for times that are comparable with the
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Fig. 6. (Color online) The evolution of the electrostatic potential produced by a moderate intensity regime displayed in Figure 5.

transit time of the pulse through the accelerators interac-
tion chamber (∼10 cm) and studied the interplay between
the spreading and the collapse (filamentation) of the pulse
in the transverse direction, in spite of the numerical lim-
itations imposed by the maximum resolution of 64 × 64
points, that we have used. We have shown that the 2D
evolution of a pancake in the weak and moderate intensity
regimes is unstable, but the collapse is not very fast. We
have followed the evolution until the times during which
the pulse travels (in the laboratory frame) the distance of
about 17 cm, which is almost two times longer than the
actual size of the interaction chamber in the laser acceler-
ator device. While the envelope of the laser pulse was not
much affected by the collapse, a relatively slow transverse
contraction of the electrostatic potential was observed. In
addition, we would like to emphasize that pulses whose
intensities fall in the weak or moderate intensity ranges
behave similarly to the standard NLS solitons and survive
unchanged during a time sufficiently longer than required
for the laser accelerator scheme. Thus, within this pre-
liminary analysis, we do not expect that the transverse
collapse constitutes a critical limitation for the accelera-
tor scheme under consideration here.

In the strong intensity regime, we have outlined the
role of the saturation of the nonlinear and nonlocal plasma
response relevant to the pancake self-consistent evolution.
For the typical maximum power and suitable choice of
the longitudinal and the transverse dimensions of FLAME
that preserve the 1D hydrodynamical approximation (see
Sect. 4), we have found the appropriate set of Zakharov
equations governing the pancake evolution that we have
compared to the corresponding set of equation valid for
the weak and moderate intensity regimes.

Remarkably, our approach provides a physical model
in terms of the pair of coupled nonlinear partial differential

equations (Zakharov-like system), widely used in plasma
physics and in many other areas of nonlinear physics, that
give suitable and appropriate descriptions of the laser-
plasma interaction in the diverse regimes considered in
this paper. Their analytical and numerical solutions (the
latter have been obtained by a standard PC) may be very
helpful and relevant to the interpretation of the results
given by the standard simulation codes presently widely
employed to describe the very violent self-consistent laser-
plasma interactions.

Finally, we want to outline that a special care must be
taken when the longitudinal nonlocality, as described by
the pair of equations (47) and (48), is considered under
the assumption such that φ ∼ 1. In fact, for consistency,
one must account for the feedback from the electrostatic
wake (which is a spatially extended structure) to the elec-
tromagnetic pulse (which is localized in the direction of
propagation). The conditions for the coexistence of such
localized and extended components will be studied in a
forthcoming work.

Preliminary results [67] indicate an agreement between
our semi-analytic results with those obtained using mas-
sive fluid simulations by the Pisa group in the moderate
intensity regime. This work in progress will include also
the considerations of the strong intensity regime, in the
case of pancake pulses with slightly shorter lengths and
smaller spot sizes, yielding an expulsion of electrons and
the creation of vacuum channels.

Although the classical works [1–6,47,62,63] regard the
relativistic plasma in a moderate intensity regime as a cold
fluid [61], it is worth noting that the nonlinear contribu-
tion to the off-diagonal terms in the electron stress tensor
may give rise to the non-curlfree component of the time-
dependent ponderomotive force [68], that is one among the
known mechanisms for the generation of quasi-stationary,
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mega-Gauss magnetic fields1. Alternatively, it is usually
thought [58] that the creation of a quasistationary mag-
netic field by a laser pulse with a duration < 0.1 ps, in a
homogeneous, collisionless, and tenuous plasma, is likely
to come from the jets of fast electrons arising in laser
plasma. These jets are subject to the Weibel instability,
leading to the current filamentation and the generation of
a magnetic field [69,70]. As the latter is located mostly in
the plasma wake, behind the main pulse [58,69], it is not
expected to affect significantly the propagation of the laser
pulse. For the spatial structure of such wake magnetic field
see e.g. [71] and references therein. The magnetic field has
been known to have a focusing effect on relativistic elec-
trons in the plasma wakefield accelerator context [72]. The
experimental results definitely indicate that the lifetimes
of magnetic fields are considerably longer (by orders of
magnitude) than the laser pulse duration [58]. The role
of the self-generated magnetic field is beyond the scope of
the present paper, and it will be the subject of a future
study.
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71. D. Jovanović, F. Pegoraro, F. Califano, Phys. Plasmas 8,

3217 (2001)
72. L.M. Gorbunov, P. Mora, T.M. Antonsen, Phys. Plasmas

4, 4358 (1997)
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