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The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is

experimentally consolidated and fairly well understood. However, uncertainties remain in the

analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off,

but the maximum energy depends on the simulation time, following different laws in two and three

dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some

arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D

PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge

distribution on the target rear side. The kinetic energy of the protons that we obtain follows two dis-

tinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uni-

form foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the

scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the

cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse config-

uration, are comparable. This suggests that parametric scans can be performed with 2D simulations

since 3D ones are computationally very expensive, delegating their role only to a correspondence

check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the tar-

get thickness L and the incidence angle a, with a fixed a0¼ 3. A monotonic dependence, on L for

normal incidence and on a for fixed L, is found, as in the experimental results for high temporal

contrast pulses. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979901]

I. INTRODUCTION

The acceleration of protons by intense laser pulses is

still the subject of active experimental investigation. The

most consolidated regime is the Target Normal Sheath

Acceleration (TNSA), where the electrons, heated by a laser,

diffuse and leave the target, creating an electric field which

accelerates the surface protons present in the contaminants.

The comparison with current particle-in-cell (PIC) simula-

tions is still affected by uncertainties. Indeed, the energy

spectra are found to be exponential with a cut-off

dN=dE ¼ ðEmax=TÞ e�E=T for E < Emax

dN=dE ¼ 0 for E > Emax;

(

but the cut-off energy Emax and the average energy T (proton

temperature) depend on time. In 2D PIC TNSA simulations,

a monotonic rise of Emax with time is observed, whereas in

3D PIC, a slow trend towards a possible saturation to an

asymptotic value is usually observed. As a consequence, a

comparison of 2D (two dimensional) and 3D (three dimen-

sional) simulations is difficult since the laws of the cut-off

energy rise with time Emax(t) appear to be different.

Although the different asymptotic dependence on t for

Emax for 2D and 3D PIC simulations is well known, its origin

has not been investigated. Empirical rules, based on a choice

of t related to laser pulse duration sL, have been proposed,

and the ratio between the 3D and 2D cut-off energies has

been suggested to be �2/3. To our knowledge, no model was

proposed to explain this behaviour. A logarithmic growth of

the proton energy was shown to occur in a plasma vacuum

expansion model, but no relation with PIC simulations was

suggested. A comparison of 2D and 3D simulations was pre-

sented in the literature for a model of composite targets

(foamþmetal target),1 but the problem of the different asymp-

totic behaviour of Emax was not addressed. Another systematic

study, using 2D and 3D simulation, was presented for thin

solid targets down to the transparency limit and for near critical

targets.2 In both cases, the acceleration regime is not TNSA,

the way the cut-off energies in 2D and 3D are determined is

not specified, and a model to relate them is not proposed.

In this paper, we try to give a phenomenological answer

to this question, by proposing two empirical laws for Emax(t),
which are suggested by a model first proposed by Schreiber

et al.,3 to describe the dependence of the cut-off energy from

the laser pulse duration.

Schreiber’s model refers to a 3D configuration, and we

worked out its 2D version obtaining an analytic approxima-

tion to the cut-off energy dependence on time. Both in 2D

and 3D, the cut-off energy Emax(t) depends only on two

parameters, the rise time t*, and the asymptotic energy E1.a)sinigardi@bo.infn.it
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This model assumes that the hot electron cloud leaves

the rear side of the target, creating a surface density of posi-

tive charge, whose electric field accelerates the protons

belonging to the contaminants. For a Gaussian laser pulse of

waist R, we have considered a 2D model in which the surface

charge is located on a strip, with the infinite length and

height 2R, and a 3D model in which the surface charge is

located on a disc of radius R. In our model, the laser is

assumed to have normal incidence on the target and in

Figure 1, we sketch the geometric configurations.

The numerical analysis presented here refers to a laser

pulse with s¼ 40 fs and a0¼ 3. This choice was made

because, recently, systematic experiments with such a laser

pulse were carried out at ILIL in Pisa.4 Furthermore, several

experiments with similar parameters, which ensure that the

acceleration regime is TNSA, are present in the literature.

For an overview on the physics of the proton acceleration by

high intensity lasers and related experiments, we refer to

recent reviews.5–7 In the intensity range that we have consid-

ered, experimental results concerning the dependence on the

target thickness, the incidence angle, and the temporal con-

trast are reported in many papers.8–14 When the contrast is

very high, the cut-off energy varies monotonically with tar-

get thickness and if the contrast were infinite, this behaviour

should be observed, until the radiation pressure becomes

dominant by approaching the relativistic transparency limit.

When the contrast is finite, as in experiments, a maximum in

the cut-off energy Emax is reached by decreasing the metal

foil thickness. Further reducing it, a rapid decrease to zero of

Emax is observed due to the increasing damage on the foil

induced by the prepulse. A significant dependence on the

incidence angle is also observed, and typically, the proton

cut-off energy increases with the angle up to a maximum

value because the electrons are heated more efficiently.6

In our model, the preplasma is neglected (the temporal

contrast is assumed as infinite). Because of this choice, the

Amplified Spontaneous Emission (ASE) prepulse is not per-

mitted. On the other hand, a prepulse coming from compres-

sion artefacts (ps time scale) can be tolerated when

comparing our simulation results with experiments, as long

as the plasma preformed on the illuminated side of the target

has a scale length much shorter than the laser wavelength.

The 2D and 3D simulations were carried out with the

ALaDyn code,15 and the asymptotic cut-off energy E1 was

determined by a best-fit procedure on its time dependence,

following the laws obtained from the electrostatic model,

which just depend on two parameters: the asymptotic cut-off

energy E1 and the rise time t*, i.e., the time at which the

energy starts to rise.

Beyond the good agreement of the asymptotic cut-off

energies obtained from 2D and 3D simulations, the mono-

tonic dependence on the incidence angle and the target thick-

ness was found to be in qualitative agreement with the

experimental results for high contrast pulses.

In our 3D simulations, the transverse section of the com-

putational box is the same as the target, whose extension is

comparable with the focal spot (four times bigger) measured

by the waist. As a consequence, a leakage of electrons from

the computational box occurs and when the fraction of lost

electrons becomes appreciable, typically for ct significantly

above 100 lm, the simulation loses reliability. That is why

we stop our analysis at this time. Increasing the box size

would enable us to go further but without adding any insight-

ful detail.

Our method allows us to limit the simulation even to

ct¼ 60�80 lm using small boxes since the results are

already stable and comparable with 3D results. Here, we pre-

sent the results for a single laser pulse and various target

thicknesses, to assess the validity of our model, even though

we have started a more extensive exploration by varying the

laser duration, its intensity, and the metal target electron den-

sity. A detailed analysis of the dependence of E1 and t* on

laser and target parameters will give us a better insight, but,

from the encouraging results obtained so far, we can con-

clude that the simple method we propose here appears to be

adequate to extract the asymptotic cut-off energy from PIC

simulations.

II. THE 3D CASE

Starting from the 3D case and considering a laser pulse

which propagates along the z axis, we choose an electrostatic

potential which vanishes at z¼ 0, where a uniform charge

density r, within a disc of radius R, is located. This potential

is given by

V fð Þ ¼ 2pR r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
� f� 1

� �
f ¼ z

R
:FIG. 1. Schematic representation of the configurations used to compute the

accelerating field: 3D (top) and 2D (bottom).

043106-2 Babaei et al. Phys. Plasmas 24, 043106 (2017)



Asymptotically, for z ! 1, it behaves as V¼Q/z, where

Q¼ pR2r is the charge on the disc. A particle initially at rest

accelerates, and the law of motion is obtained from energy

conservation. Since V(0)¼ 0, we have

m
v2

2
þ eV zð Þ ¼ 0 v ¼ _z:

Letting v1 ¼ _zð1Þ, the kinetic energy of the particle, after

integrating the equation of motion, is

E tð Þ ’ E1 1� t�

t

� �2

t > t� ¼ R

4v1
;

where

E1 ¼ m
v2
1
2
¼ 2peRr:

Since this is an asymptotic law, we may assume that E(t)¼ 0

for t< t*. Notice that E is the highest energy reached at time

t, namely, E¼Emax.

III. THE 2D CASE

In this case, we have an infinite strip along the y axis

with uniform charge density r on –R< x<R. A potential

that vanishes at z¼ 0 is given by

V zð Þ ¼ 4Rr �f arctan
1

f
þ log

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p
 !

’ �4Rr log 1þ fð Þ;

where we defined f ¼ z=R. To obtain this result, it is simpler

to compute first the electric field Ex ¼ 4r arctanð1=fÞ, whose

asymptotic behaviour is 4r/f. As a consequence, a potential

having this asymptotic behaviour and which vanishes at the

origin is V̂ ’ �4Rr logð1þ fÞ. The potential in this case

diverges logarithmically, and consequently, the particle

accelerates indefinitely. We approximate the potential energy

with

eV̂ zð Þ ¼ �E1 log 1þ fð Þ; E1 � m
v2
1
2
¼ 4eRr:

We may then easily solve the equations of motion from energy

conservation, assuming the proton are initially at rest in the ori-

gin as for the 3D case. The result is (see the Appendix for

more details)

E tð Þ ¼ E1 log
t

t�

� �
t � t� ¼ R

v1
:

Again, since this is an asymptotic law, we may assume that

E(t)¼ 0 for t< t*.

IV. COMPARISON WITH PIC SIMULATIONS

Even though the models we propose are very simple, we

tried to see whether the predicted asymptotic laws for E(t)
hold for PIC simulations. The answer is positive, at least for

targets consisting of a uniform foil whose thickness is in the

micrometer range, covered by a thin layer of contaminants.

For this type of targets, the fits, both for 2D and 3D PIC sim-

ulations, are surprisingly accurate. However, the asymptotic

energy E1 and the time scale t* in 2D and 3D must be con-

sidered fitting parameters, even though the results we obtain

have the correct order of magnitude with respect to the theo-

retical results.

The law to be fitted for 2D simulations is

E 2Dð Þ
max ctð Þ ¼ 0 for t < t� 2Dð Þ

E 2Dð Þ
max ctð Þ ¼ E 2Dð Þ

1 log
ct

ct�
for t > t� 2Dð Þ:

8><
>:

We perform a linear fit by defining y¼E and x ¼ log ct so

that the previous law becomes

y ¼ aþ bx; Eð2DÞ
1 ¼ b; ct�ð2DÞ ¼ e�a=b:

The law to be fitted for 3D simulations is

E 3Dð Þ
max ctð Þ ¼ 0 for t < t� 3Dð Þ

E 3Dð Þ
max ctð Þ ¼ E 3Dð Þ

1 1� ct� 3Dð Þ

ct

� �2

for t > t� 3Dð Þ:

8><
>:

We can perform a linear fit by defining y ¼
ffiffiffi
E
p

and x¼ 1/ct
so that the previous law becomes

y ¼ aþ bx; E 3Dð Þ
1 ¼ a2; ct� 3Dð Þ ¼ � b

a
:

V. RESULTS FOR 2D SIMULATIONS

We have considered the following model: the laser pulse

has wavelength k¼ 0.8 lm, intensity I¼ 2� 1019 W/cm2,

waist 6.2 lm, and P-polarization and its duration is 40 fs.

The corresponding normalized vector potential is a0¼ 3. The

target is a uniform Al foil of thickness L varying between 0.5

and 8 lm, having a layer of hydrogen on the rear (nonillumi-

nated) side, with a fixed thickness of 0.08 lm.

The ionization levels are Al9þ and Hþ, and it is fixed

throughout the simulation. The electron densities have been

chosen as nAl
e ¼ 100 nc and nH

e ¼ 10 nc. For an Al foil, whose

thickness is in the range of 0.5–8 lm, we expect that the pro-

cess is dominated by TNSA (we are far above the transpar-

ency limit). The collisions have been neglected in our

simulations.

In Figure 2, we show the results obtained from 2D simu-

lations for 0:5lm � L � 8lm, by plotting Emax(ct) in a lin-

ear and a logarithmic scale for ct with the corresponding fits.

In Table I, we quote the results of the fit: we notice that

Eð2DÞ
1 ’ Eðct ¼ 50Þ. In Figure 3, we resume the dependence

of the cut-off energy on the thickness. In Figure 4, we show

the results of 2D simulations obtained when the incidence

angle is small but different from zero: the logarithmic growth

in ct is still present, and the linear fits are quite good; see

also Table II, where the numeric values for a¼ 5	, 10	, and

15	, and a target thickness of L¼ 2 lm are shown.
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VI. RESULTS FOR 3D SIMULATIONS

We present now the results for some 3D simulations,

precisely with L¼ 0.5, 1, and 2 lm. In Figure 5, we show the

curves corresponding to a linear fit to
ffiffiffiffiffiffiffiffiffi
EðtÞ

p
versus 1/ct. The

asymptotic values Eð3DÞ
1 and the fitting curves up to ct

¼ 100 lm are shown in the upper panel of Figure 5.

We notice that, even though the extrapolated data from

the 2D and 3D simulations are not the same, the correspon-

dence is quite reasonable. In Table III, the numerical results

are quoted, and in any case, the discrepancy does not exceed

20%. We may observe that the energy for ct¼ 50 lm in the

2D simulation is very close to the extrapolated value, due to

the logarithmic growth, but in 3D, at ct¼ 50 lm, the energy

value is less than one half of the extrapolated value E1, due

to the slower rise. In this case, there is an asymptotic limit,

FIG. 2. (Top) Cut-off energy Emax versus ct in the range 10� ct� 100 lm

obtained from a PIC simulation (stars) and comparison with the fit (continu-

ous line) for targets of various thicknesses L. Blue (cyan), L¼ 0.5 lm; dark

green (green), L¼ 1 lm; purple (violet), L¼ 2 lm; brown (orange),

L¼ 4 lm; and black (grey), L¼ 8 lm. (Bottom) The same as the upper panel

but on a logarithmic scale for ct, which clearly shows the linearity and the

accuracy of the fit.

TABLE I. Fitting parameters for 2D simulations with zero incidence angle

and target thicknesses 0.5�L� 8 lm. The chosen intervals for fitting are

ct1¼ 20 lm and ct2¼ 80 lm.

L Emax (ct¼ 50) Eð2DÞ
1 ct*(2D) rE rct�

0.5 2.64 2.62 17.5 0.05 0.03

1 1.82 1.82 18.0 0.02 0.15

2 1.19 1.19 18.4 0.02 0.2

4 0.58 0.61 19.9 0.02 0.5

8 0.25 0.33 23.3 0.02 0.9

FIG. 3. Comparison of the extrapolated cut-off energy for 2D PIC simula-

tions (blue stars) for different target thicknesses L¼ 0.5, 1, 2, 4, and 8 lm

and a fit with the curve Emax¼ 1/L0.9 (cyan line).

FIG. 4. (Top) Comparison of the 2D PIC solution with a small incidence

angle a. The figure shows Emax versus ct, with the stars corresponding to the

PIC simulation and the curves to the fit for various angles: a¼ 5	, dark green

(green); a¼ 10	, purple (violet); and a¼ 15	, brown (orange). (Bottom) The

same data are plotted with a logarithmic scale for ct, which shows how the

data stay on a line and the accuracy of the linear fit (Table II).
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which is reached quite far, when ct> 200 lm. Such a large

value is computationally too expensive to be attained, but a

correct extrapolation is still possible with data just up to

ct� 50 lm.

The comparison with the experimental results is a chal-

lenging task: in Figure 6, we show the results of some

experiments whose laser pulse has the same P-polarization,

with a duration and intensity very close to the ones consid-

ered here and whose target has the same structure, namely, a

metal foil plus contaminants. The cut-off energy increases as

the target thickness is reduced, until the effect of finite con-

trast prevails inverting the trend. The results of various

experiments differ by more than a factor two, but the

decreasing trend is similar, and the same behaviour can be

seen in the 2D and 3D PIC simulations.

VII. CONCLUSIONS

The asymptotic value of the cut-off energy of protons,

which is what is measured in experiments, is difficult to

extract from PIC simulations. Indeed, the 2D results do not

exhibit a saturation, whereas the 3D results show that a satura-

tion might be reached, despite at a large time (ct> 200 lm),

which is computationally too expensive to be reached. We

propose here a simple recipe based on the model described by

Schreiber et al.,3 which assumes that the acceleration of pro-

tons present in the contaminants is due to the positive surface

charge created on the rear target, thanks to the escape of the

electrons. In the 3D version, the charged spot is circular with

a radius R comparable with laser waist. The rise in time of the

cut-off energy can be analytically computed. We have formu-

lated an analogous 2D model where the charge is on an infi-

nite strip of height 2R, and we obtain a simple asymptotic

expression for the rise in time of the cut-off energy, which

does not saturate but exhibits a logarithmic growth, just as in

1D models of the vacuum expansion of plasmas.16 The analyt-

ical results suggest two phenomenological laws, which depend

on the asymptotic energy E1 and the time t* at which the

acceleration begins. The fits to the 2D and 3D results coming

from PIC simulations are quite good, and the statistical uncer-

tainties rE1=E1 and rct�=ct� are quite small (a few percent).

TABLE II. Fitting parameters for 2D simulations for three different inci-

dence angles a¼ 5	, 10	, and 15	 and target thickness L¼ 2 lm. The chosen

intervals for fitting are ct1¼ 20 lm and ct2¼ 80 lm, and the fitting errors are

quoted.

a Emax (ct¼ 50) Eð2DÞ
1 ct*(2D) rE rct�

5 1.28 1.40 19.9 0.01 0.1

10 1.47 1.62 20.1 0.01 0.1

15 1.59 1.82 20.7 0.02 0.15

FIG. 5. (Top) Results for a 3D PIC simulation for Emax versus ct (stars) com-

pared with the linear fit of
ffiffiffiffiffiffiffiffiffiffi
Emax

p
as a function of 1/ct (continuous lines, and

the asymptotic values Eð3DÞ
1 are also shown), for different target thicknesses:

L¼ 0.5 lm, blue (cyan); L¼ 1 lm, dark green (green); and L¼ 2 lm, purple

(violet). (Bottom) Plot of
ffiffiffiffiffiffiffiffiffiffi
Emax

p
versus 1/ct, which shows their linearity,

with the corresponding linear fit.

TABLE III. Fitting parameters for 3D simulations for zero incidence angle

and three different target thicknesses L¼ 0.5, 1, and 2 lm. The chosen inter-

vals for fitting are ct1¼ 20 lm and ct2¼ 60 lm, and the fitting errors are

quoted.

L Emax (ct¼ 50) Eð3DÞ
1 ct*(3D) rE rct�

0.5 1.25 2.63 15.3 0.01 0.2

1 0.56 1.43 18.9 0.02 0.1

2 0.44 1.04 17.3 0.01 0.1 FIG. 6. Plot of Emax versus L on a logarithmic scale from various experi-

ments with a laser pulse having a0� 3 and a metal target: the Ceccotti exper-

iment (45	 incidence angle) from Ref. 9 (blue circles), Neely experiment

(30	) from Ref. 12 (green crosses), and Flacco experiment (45	) from Ref.

14 (purple stars). These data are compared with the results of our 2D PIC

simulation at zero degree incidence (filled red squares) and at 30	 incidence

(empty red squares) and 3D PIC simulation at zero degree incidence (empty

black circles).
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The extrapolated values Eð2DÞ
1 and Eð3DÞ

1 , computed for differ-

ent target thicknesses, are comparable, and moreover, they

can be fully calculated fitting the results obtained before

ct� 50–60 lm, which is a distance reachable also in 3D

numerical simulations. There is no need to let simulations

run longer since the fit can already be correctly obtained.

The fitting appears to be satisfactory also for small incidence

angles, even though the model was developed for normal

incidence.

To conclude, we believe that, for the targets that we

have analysed, in which the protons are only on the thin layer

above the bulk, the proposed phenomenological model is

adequate to avoid the arbitrariness in the choice of the time

at which the asymptotic cut-off energy is chosen in numeri-

cal simulations. In addition, the parametric explorations,

which can be carried out only in 2D, may have a quantitative

value, with an adequate extrapolation, rather than being of

purely qualitative nature. The results we have presented refer

to a specific intensity and a range of target thicknesses cho-

sen in order to fulfil the applicability conditions of the

model.
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APPENDIX: ASYMPTOTIC CUT-OFF ENERGY
ANALYTICAL ESTIMATES

Let us consider a target which is infinitely extended

along the plane xy and delimited by the planes z¼ –L and

z¼ 0. We can consider a circular radius rL which we assume

to be the spot of the laser pulse propagating along z. The

electrons are heated and diffused by the laser itself.

Supposing that they diverge with angle h, the electrons will

leave the plane z¼ 0 from a disc of radius

R ¼ rL þ L tan h:

We assume that the target is a metallic foil and that the pro-

tons are in the contaminants deposited on the plane z¼ 0.

The electrons, which are heated, diffuse and cross the z¼ 0

boundary, leaving the target and inducing on it a positive

charge density r(t), which we suppose varies slowly with t.
If Qe is the total number of positive charge on the surface,

the density is

r ¼ Qe

p R2
: (A1)

This is the geometry for the 3D case, which we shall treat

analytically.

We consider another geometry in which the electrons on

the plane z¼L leave the rectangle jxj � R; jyj � L of area

4LR. In this case, the density is given by

r ¼ Qe

4RL
: (A2)

The intensity defined as the power per unit surface is

assumed to be the same for both geometries.

A. The 3D case: Charge density on a disk

Using cylindrical coordinates and computing the poten-

tial, we have

V zð Þ ¼ 2pr
ðR

0

rdr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p ¼ pr

ðR

0

dr2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2
p

¼ 2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ R2

p
� z

h i
:

Introducing the dimensionless variable f¼ z/R, we have

VðfÞ ¼ 2p Rr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
� f

� �
:

Since V(0)¼ 2pRr, we redefine the potential by subtracting

it.

V̂ðfÞ ¼ VðfÞ � Vð0Þ ¼ 2p Rr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
� f� 1

� �
: (A3)

The potential energy is given by eV(f). We notice that

we have

V̂ zð Þ ’ �2pr z for z! 0

V̂ zð Þ ’ eQ

z
� 2Qe

R
for z!1:

8><
>:

Letting v ¼ _z and assuming v(0)¼ 0, i.e., that the pro-

tons are initially at rest on the surface z¼ 0, we can apply

the energy conservation

m
v2

2
þ eV fð Þ � Eþ eV fð Þ ¼ 0:

Calling v1, the speed reached at infinite distance

E1 ¼ m
v2
1
2
¼ �eV 1ð Þ ¼ 2Qe2

R
¼ 2p e R r;

we can define

�eV fð Þ ¼ 2p e Rr s fð Þ ¼ m
v2
1
2

s fð Þ;

where from Equation (A3)

sðfÞ ¼ 1þ f�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
:

As a consequence, we have

E ¼ E1sðfÞ; v ¼ v1
ffiffiffiffiffiffiffiffi
sðfÞ

p
: (A4)

We introduce the new variables

X ¼
ffiffi
s
p
; s ¼ t

v1
R
:

Then, we have

df
ds
¼ v

v1
¼

ffiffiffiffiffiffiffiffi
s fð Þ

p
: (A5)
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We might solve this equation with initial condition f(0)¼ 0.

We rather solve the equation for X

dX

ds
¼ dX

ds

ds

df
df
ds
¼ 1

2

ds

df
: (A6)

Let us notice that

dX

ds
¼ 1

2
1� fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p

 !
¼ 1

2
1þ f

1� s

� ��1

:

Inverting s¼ s(f), we have f ¼ ð2s� s2Þ=ð2ð1� sÞÞ, and

finally replacing this in the r.h.s. of the last equation, we

obtain

dX

ds
¼ 1þ 1

1� sð Þ2

 !�1

¼ 1þ 1

1� X2ð Þ2

 !�1

:

The results are obtained with integration by parts

s ¼ X þ
ðX

0

du

1� u2ð Þ2

¼ X � 1

2

d

da

ðX

0

1

a2 � u2

����
a¼1

¼ X þ 1

2

X

1� X2
þ 1

4
log

1þ X

1� X
:

Asymptotically, for s!1, we have X! 1

s � 1

4 1� Xð Þ ; X ’ 1� 1

4s
:

The energy asymptotic behaviour is given by E=E1 ¼ s
¼ X2, and consequently for t!1

E ’ E1 1� 1

4s

� �2

:

B. The 2D case: Charge on slab

We consider the slab jxj � R and jyj � L on the rear sur-

face z¼ 0, where the density is given by Eq. (A2). The

potential is given by

V zð Þ ¼ r
ðR

�R

dx

ðL

�L

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 4r

ðR

0

dx

ðL=
ffiffiffiffiffiffiffiffiffi
x2þz2
p

0

duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2
p

¼ 4r
ðR

0

dx arsinh
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p
� �

: (A7)

Since 4r ¼ eQ=ðLRÞ, we first consider the limit L ! 0,

which corresponds to the density rðzÞ ¼ eQ=ð2RÞdðyÞ, and

the result, letting f¼ z/R, is

V zð Þ ¼ eQ

R

ðR

0

dx
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p
� �

¼ eQ

R
arsinh

1

f
:

Recalling that arsinhðuÞ ¼ logðuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2
p

Þ, we see that

VðfÞ � logð2=fÞ for f ! 0, whereas it vanishes as 1/f for f
! 1. As a consequence, we cannot have V vanishing at

f¼ 0 with a subtraction. Indeed, if we compute V(0), we will

see that it diverges as logð1=LÞ for L ! 0 (see Eq. (A10)).

We wish to define a potential which vanishes at z¼ 0: as a

consequence, in the definition, we have to subtract V(0). This

can be done for any finite value of L and also for L!1. In

order to compute V(0) for a given non vanishing L, we set

n¼ x/L; integrating by parts, we obtain

V 0ð Þ ¼ eQ

R

ðR=L

0

dn arsinh
1

n

¼ eQ

R
narsinh

1

n

����
R=L

0

þ
ðR=L

0

dnffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
" #

¼ eQ

R

R

L
arsinh

L

R
þ arsinh

R

L

� �
: (A8)

We see that V(0) is finite for any L> 0, that it diverges as

logð1=LÞ for L ! 0, and that it vanishes for L ! 1. We

redefine the potential as

V̂ zð Þ ¼ V zð Þ � V 0ð Þ

¼ eQ

RL

ðR

0

dx arsinh
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p
� �

� arsinh
L

x

� �
:

Let us consider the asymptotic behaviour of V(z), for z!1,

for L having any fixed finite value. To this end, we recall

that, when u ¼ L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

! 0, we can approximate arsinh

with its Taylor expansion arsinhðuÞ ¼ u� u3=6 þOðu5Þ;
retaining only the first term, we have

V zð Þ ¼ eQ

R

ðR=z

0

duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2
p ¼ eQ

R
arsinh

R

z
’ eQ

z
:

We consider now the limit L ! 1: here, it is evident that

V(0)¼ 0. Moreover, starting from Equation (A7) and com-

puting the electric field, we have

Ez ¼ �
@V

@z
¼ 4r

ðR

0

dx
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ L2

x2 þ z2

r L z

x2 þ z2ð Þ3=2

¼ 4r
ðR

0

dx

z

1

1þ x2

z2

1

1þ x2 þ z2

L2

� �1=2
:

If we take the limit for L ! 1, we recover the following

result

Ez ¼ 4rarctan
R

z
; Ez �

4rR

z
for z!1: (A9)

As a consequence, the potential behaves as VðzÞ ’ �4rR
logðR=zÞ for z!1. We compute exactly the potential corre-

sponding to Eq. (A9), introducing again the dimensionless

variable f¼ z/R
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V zð Þ ¼ �4r
ðz

0

arctan
R

z0
dz0

¼ 4Rr �f arctan
1

f
þ log

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2
� 	q

0
@

1
A; (A10)

where manifestly V(0)¼ 0.

The potential now diverges for z ! 1, but we still use

the energy conservation

Eþ eV ¼ 0; E ¼ �eV ¼ E1sðfÞ;

where we put, in analogy with the 3D,

E1 � m
v2
1
2
¼ 4eRr

s fð Þ ¼ f arctan
1

f
� log

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p
and Eq. (A5) holds for the coordinate f. As in the 3D case,

we introduce the coordinate X ¼ ffiffi
s
p

and Eq. (A6) holds. In

order to simplify the analysis, we replace s(f), defined by Eq.

(A8), with sðfÞ ¼ logð1þ fÞ which has the same asymptotic

behaviour at f¼ 0 and f!1. Finally, we have

dX

ds
¼ 1

2

1

1þ f
¼ e�s

2
¼ 1

2
e�X2

:

The solution reads

s ¼ 2

ðX

0

eu2

du ¼ ex2 1

x
þ 1

2x3
þ O

1

x5

� �� �
:

Retaining only the first term, we invert the equation

x2 ¼ log sþ log x; x2 ¼ log sþ 1

2
log log sþ 
 
 
 :

The results is given by

E ¼ E1 log sþ 1

2
log log s

� �
s ¼ t

v1
R
;

and neglecting the loglog term, we get the required result.
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