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The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to
obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical
applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full
control of the gas particle number density in the interaction region, thus allowing for a long term
stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be
used to estimate the particle density inside the flow cell based on the preset backing pressure and the
room temperature because the gas flow depends on several factors like tubing, regulators, and valves
in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput.
Here, second-harmonic interferometry is applied to measure the particle number density inside a flow
gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that
using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible
to finely tune the number density up to the 1019 cm−3 range well suited for LWFA. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4960399]

After several decades of fundamental research on high-
intensity laser-plasma interaction, recent progress on the
production of energetic particle beams from laser wakefield
acceleration (LWFA)1 has opened the way for actual applica-
tions in future accelerator technology2,3 as well as for medical
uses including therapy and diagnosis.4–7 To implement these
practical applications, full control of the LWFA process is
mandatory. A key role in LWFA is played by the free-electron
density in the plasma, which is directly related to the particle
number density N . Different kinds of gaseous targets can
be employed in LWFA. Supersonic gas jets are widely used
as they allow for generating a flat density profile bounded
by steep gradients. Density profiles can however vary shot-
to-shot due to several reasons, including reproducibility of
valve operation over time and flow turbulences. Moreover,
high repetition rate operation is limited by valve pulsing
capability. Capillary discharges are good candidates for
LWFA, as the laser can be guided over a few centimeters,
thus increasing the acceleration length and the final energy of
electrons.8 These targets are yet difficult to setup, get damaged
by repetitive use, and require sophisticated characterization
methods9 which hamper real-time monitoring. Using gas cell
targets is preferable to avoid the above mentioned limitations,
enabling a stable and manageable laser-plasma interaction
process, even with high repetition rate laser, along with
easily tunable accelerator length in order to vary electron

a)Electronic mail: fernando.brandi@ino.it

energy.10,11 Moreover, flow gas cells are ideal candidates
to be implemented in multi-stage accelerators.12,13 All these
features are extremely important in the perspective of design-
ing and implementing LWFA-based facilities with superior
beam quality and reliability necessary for actual high-level
applications.14 However, N in a flow gas cannot be inferred
from the backing pressure and ambient temperature using the
ideal gas law,15 thus real-time monitor is needed. N can be
accurately measured by interferometric techniques. Standard
two-arm interferometers (e.g., Mach-Zehnder interferometer)
are widely used for the characterization of gas targets16 but
suffer from a high sensitivity on the environmental conditions.
The implementation of two-arm interferometers with a quasi-
common-path configuration (e.g., Nomarski interferometer)
reduces the influence of environmental conditions but requires
substantial data manipulation and analysis to extract the
actual density from the recorded interferograms,17 limiting
their applicability for a real-time measurement. For the
above mentioned reasons, the use of standard interferometric
approaches for an accurate real-time monitoring over an
extended period of time is prevented in practice. An alternative
robust and fast method to precisely measure N is based
on the so-called second-harmonic interferometer (SHI)18,19

a single-arm, two-color interferometer, with a measured
phase shift given by ∆φ = 4π

λ


L ∆n(λ)dl = 4π

λ
L∆n(λ), where

∆n(λ) = n(λ) − n(λ/2), n(λ) is the refractive index, λ is
the wavelength, and L the optical path in the sample. As
a comparison, in two-arm interferometers, the measured
phase shift is given by 2π

λ


L(n(λ) − 1)dl. The value of
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the refractivity (n(λ) − 1) for gases in the visible to near-
infrared range is ∼2 orders of magnitude larger than the
corresponding∆n(λ). Therefore, the lengthy data analysis and
reduced accuracy related to fringe jump15,20 when measuring
large density variations with two-arm interferometers may
be avoided using the SHI. As example, for a path length
of 50 mm in argon at standard temperature and pressure
(∆n0 (1064 nm) = 40 × 10−7),21 the phase shift experienced
by the SHI is 2.36 rad, while the corresponding phase shift in
a two-arm interferometer is 76.4 rad.22

A high-speed (∼ µs) and high-sensitivity (∼ mrad) SHI
employing a continuous wave Nd:YAG laser and phase detec-
tion has been developed23 and implemented to measure elect-
ron density in a large plasma,24 number density in a pulsed gas
jet,25 and to perform quantitative phase dispersion imaging.26

Here, we report on the use of such a compact SHI to measure
N in real-time inside a flow gas cell of variable length designed
specifically for LWFA experiments. In fact, the SHI satisfies
the requirements for a fast and reliable measurement, provid-
ing an efficient method to control N within the interaction
region.

The gas system setup used in the experiment is schemat-
ically shown in Fig. 1(a). The gas flow cell is placed inside
a vacuum chamber that comprises optical windows used to
couple the laser light in and out, a feed through for the gas pipe,
and a scroll vacuum pump. The gas is supplied to the cell by
means of an electronic valve, and the applied backing pressure
is set by the gas cylinder regulator and measured by a gauge
with 50 mbar resolution placed in proximity to the valve. A
3D schematic of the gas cell is reported in Fig. 1(b). The cell
comprises two lateral glass windows that allow transverse op-
tical access for the interferometric measurements (L = 50 mm)
and two longitudinal orifice apertures to couple in and out the
high-power ultrashort laser pulse and the produced particle
beam, respectively. The two orifices, which in the present
experiment are set 12 mm apart, allow also the gas to flow
from the cell into the vacuum chamber. Three pairs of orifices

FIG. 1. (a) Schematic of the gas supply system: L-pipe length, ID-pipe
internal diameter; (b) schematic of the flow gas cell assembly; (c) photo of the
cell in the vacuum chamber with the interferometer optical path highlighted
by red dashed line.

are used, with different aperture diameters, namely, 0.2 mm,
0.5 mm, and 2 mm. In Fig. 1(c), a photograph of the apparatus
comprising the vacuum chamber, the cell, and the SHI is
shown, with the optical path of the interferometer highlighted
by the dashed line. The quantity acquired by the SHI is given
by V sin(∆φ + φ0) + α,23 where φ0 is the off-set phase that can
be reduced below 1 mrad acting on a phase compensator, V
is the fringe visibility, and α ≪ 1 is related to the detector
responsivities. The visibility is directly obtained by scanning
the phase compensator over half-fringe27,28 and for the present

FIG. 2. The evolution of N in the cell for different backing pressure and
orifice aperture sizes: (a) 0.8 bar; (b) 0.6 bar; (c) 0.4 bar; (d) 0.2 bar. In all
figures, the continuous (black), dashed (red), and dotted-dashed (green) lines
correspond to 0.2 mm, 0.5 mm, and 2 mm orifice diameters, respectively.
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experiment is found to be V = 0.9. In general, the refractivity
(n − 1) of a gas is related to N which is determined by the
equation of state at a given temperatureT and pressure P. In the
present case, the Gladstone-Dale relation between the refrac-
tivity and the number density, (n − 1) ∝ N , and ideal gas equa-
tion of state, N ∝ P/T , are assumed.29 Therefore, the average
particle number density is related to the measured phase
by the equation N = λ

4πL
N0
∆n0
∆φ = 1.14∆φ × 1019 cm−3, where

N0 = 2.69 × 1019 cm−3 is the Loschmidt constant.
The results of the systematic measurements for four

values of the backing pressure, i.e., 0.2, 0.4, 0.6, and 0.8 bar
are reported in Fig. 2. The actual gas flow can be described
as follows: (i) the filling up of the cell starts at the backing
pressure given by the preset value; (ii) after the first 100 ms,
the orifices start to play a role and the filling up rate decreases
with increasing aperture diameter; (iii) when the gas flow
demand exceeds the controlling capabilities of the regulator
the pressure at the cell inlet drops, reducing the cell’s filling up
rate; (iv) in case of large apertures and/or low preset backing
pressure, N decreases at longer time due to the higher gas
flow from the cell to the vacuum chamber compared to the
flow from the gas supply system to the cell.

In conclusion, it is demonstrated that the SHI can be used
to monitor N in real-time and it is found that the ideal gas
law cannot indeed be used to estimate N inside the flow cell
solely based on the preset backing pressure and the room
temperature, i.e., ∼2.5 × 1019 cm−3 bar−1. This is because the
actual gas flow depends on several factors like tubing, regula-
tors, and valves in the gas supply system, as well as vacuum
chamber volume, vacuum pump speed/throughput, and cell’s
orifice diameters. In fact, for the same backing pressure, N can
differ by almost a factor of 2 when using 0.2 mm or 0.5 mm
orifice. Moreover, in a repetitive operation, changes of the
orifice’s diameter in time due to laser ablation should be taken
into account, thus confirming that a real-time monitoring is
required to maintain a long-term stable N inside the cell.
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