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An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-
matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation
Laboratory facility with a laser intensity of up to 2 × 1019 W/cm2. A Thomson parabola spectrometer
was used to obtain the spectra of the ions of the different species accelerated. Here, we show the
energy spectra of light-ions and we discuss their dependence on structural characteristics of the
target and the role of surface and target bulk in the acceleration process. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934691]

I. INTRODUCTION

In recent years, laser ion acceleration has gained much
interest focusing on fast ions emitted from a solid target by
intense laser irradiation.1,2 Protons and heavier ions can be
accelerated up to tens MeV per nucleon via various mecha-
nisms such as target normal sheath acceleration (TNSA),3–5

radiation pressure acceleration (RPA),6–10 and break-out
afterburner acceleration (BOA).11–13

Our work concerns the TNSA regime, in which an intense
laser pulse is focused (>1018 W/cm2) on a 10 micrometers
thick foil target. Several processes involving energy transfer
between the laser pulse and the target electrons occur, with a
significant role played by plasma density gradient set up by
the specific laser pulse temporal properties due to Amplified
Spontaneous Emission (ASE) and to laser pulse compression.
Consequently, a population of hot electrons with a mean free
path larger than the target thickness is produced. Hence, these
electrons can cross the target itself, often subject to strong
magnetic fields with complex features depending upon target
properties,14,15 setting up an intense electrostatic field due to
the charge imbalance between positive ions at rest in the target
and the expanding electron sheath.16

Typically, this field accelerates simultaneously several
ion species, originated partly from the bulk target material,

Note: Contributed paper, published as part of the Proceedings of the 16th In-
ternational Conference on Ion Sources, New York, New York, USA, August
2015.
a)Author to whom correspondence should be addressed. Electronic mail:

tudisco@lns.infn.it.

but predominantly from the hydrocarbon contaminant layers
present on both sides of the target foils. Therefore, such ion
sources are typically multi-species (protons, several charge
states of carbon, and the bulk target elements) and demand
spectrometers with adequate charged species discrimination
capability. Detecting and identifying the energy spectra of
individual ion species are the key for understanding the
underlying acceleration mechanism. In this context, we carried
out a systematic experimental investigation to identify the role
of target properties in TNSA, with special attention to target
thickness and dielectric properties. We used a full range of
ion, optical, and X-ray diagnostics to investigate laser-plasma
interaction and ion acceleration. We focus on the results
obtained using a Thomson Parabola Spectrometer (TPS).

In the TPS, often used in such experiments, ions with
different charge-to-mass ratios are separated into distinct
parabolas. This allows to extract information for each ion
species when several ions are generated simultaneously in a
given solid angle.

In this paper, we discuss the energy spectra of light-ions
depending on structural characteristics of the target.

II. EXPERIMENTAL SETUP

TPS has been employed to characterize ion beams
produced in TNSA regime. The working principle, widely
described in the literature,17–20 is based on parallel electric
and magnetic fields acting on a sharply collimated ion
beam propagating orthogonally to the fields themselves. The
Lorentz force splits the different ion species according to their
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charge-to-mass ratio and energy. This result in a series of
parabolic traces on the detector, each of them corresponding
to well determined ion species.

Our TPS is housed in a vacuum chamber, operating at a
pressure of 10−6 Torr, and differentially pumped with respect
to the target chamber. Ions enter the TPS through a collimator
consisting of two pinholes. The first pinhole is 1 mm in
diameter, drilled in a 2 cm thick substrate consisting of a
double layer matrix of brass and lead in order to collimate
the ions beam and to shield the detector from γ- and X-rays.
The second pinhole is 100 µm in diameter, drilled in a 1 mm
thick aluminum layer and is responsible for the spatial and
energy resolution of the spectrometer. The pinhole separation
is 10 cm. After the collimator, ions enter a deflection sector
consisting of parallel electric and magnetic field partially
overlapping with each other. After passing the drift region,
which allows the particles to increase deflection and separation
among different traces, the ion position is detected using an
imaging system. In our case, a micro-channel plate coupled
to a phosphor screen 75 mm in diameter (MCP-PH) and an
EMCCD camera are used to observe online the spectrogram
in single shot measurements. Further details of the TPS are
given elsewhere.21,22

The experiments have been performed at the Intense Laser
Irradiation Laboratory (ILIL) in Pisa where a Ti:sapphire laser
system is operating, which delivers 40 fs–800 nm pulses with
energy on target up to 400 mJ. The ILIL laser pulse exhibits
an ASE contrast greater than 109 and a ps contrast >107 at
10 ps before the peak pulse. The beam is focused on the target
at an angle of incidence of 15◦ using an off-axis parabolic
mirror; the corresponding maximum intensity on target was
up to 2 × 1019 W/cm2. The target was mounted on a three-axis
translational stage system at the center of a 640 mm diameter
interaction chamber. Targets consisting of different materials
were used. Here, we focus on deuterated plastic(CD2) foil
targets of 10 µm thickness.

TPS was placed in the direction of the target normal, with
a distance of 129 cm from the target surface to MCP-PH, as
shown in Fig. 1.

III. DATA ANALYSIS

The data analysis provides an estimate of ion energy
distribution and temperature. By means of TPS calibration,
it is possible to determine the kinetic energy of different ions

FIG. 1. Sketch of the experimental setup.

FIG. 2. Proton spectrum obtained by means of magnetic field.

(protons and deuterons) distributed along the parabolas and
therefore reconstruct the whole spectrum.23

Fig. 2 shows as an example the spectrum of proton energy
obtained with a CD2 target: the trend of the MCP brightness
is shown as a function of the ion’s kinetic energy obtained by
means of magnetic deflection. The brightness of the traces is
correlated with the number of particles.

Assuming a Maxwell-Boltzmann distribution for the
ions energy, the theoretical curve is given by the following
equation:24

J (E) = C(E) exp
(
− E

kT

)
. (1)

By fitting the spectra with Eq. (1), one can calculate
the ion temperature. Then, the coefficient C of the fit gives
information related to the total number of ions.

IV. RESULTS AND DISCUSSION

Fig. 3 shows an image of the phosphor screen of the MCP
from a laser shot onto a 10 µm thick CD2 foil. The image
shows parabolas from protons and deuterons. The bright spot
in the lower left corner is due to γ and X-ray radiation and to
neutral particles moving straight through the electromagnetic
field. The parabolas show a sharp cutoff near the origin, which
corresponds to the maximum ion energies.

The measurements were carried out at different laser
focusing conditions by moving the translation stage of the
target. Here, we focus the attention on ions temperature and
total number as function of the position of the target foil along
the focusing axis.

FIG. 3. Spectrograms from a 10 µm thick CD2 target.
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FIG. 4. Total number of protons and deuterons as function of the focal spots.

The number of protons is much higher than the number
of heavy deuterons, as shown in the plot of Fig. 4, although
the target was made of bulk CD2.

The protons result from the hydrocarbon contamination
on the rear target surface. The above observation confirms that
surface ion contribution is dominant with respect to volume
contribution, as shown schematically in Fig. 5. It is possible
that the protons are accelerated first and shield the heavier ions
from electric field, coming later.

After the retrieval of the protons and deuterons spectra, the
temperature of the distribution was calculated. Fig. 6 shows
the temperature as a function of the focal position showing
that protons and deuterons temperatures exhibit an opposite
trend: protons exhibit a maximum corresponding to the best
focus where deuterons show a minimum temperature. These
preliminary observations clearly show that ion acceleration
originates from a complex scenario set by the laser-target
interaction conditions. Detailed modeling is currently being
carried out to unfold the origin of surface and volume
acceleration processes observed here, taking into account the
laser target interaction mechanisms as emerging from other
measurements including optical and X-ray spectroscopies and
optical transition radiation imaging.

FIG. 5. Schematic representation of surface and volume emission.

FIG. 6. Temperature of protons (blue diamond) and deuterons (red circle) as
function of focus.

V. CONCLUSIONS

Ion acceleration mechanism in TNSA regime was here
investigated by using a Thomson Parabola spectrometer.
Surface and volume contributions to the ion acceleration have
been clearly identified by using a unique target configuration
consisting of a thin CD2 foil. Preliminary results show that
protons and deuterons temperatures show opposite trend,
suggesting a complex interplay between surface and volume
acceleration. A detailed analysis of these results is currently
in progress, also in view of the full set of measurements of
laser-plasma interaction and laser-pulse specifications.
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