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ABSTRACT 
 

Radiation therapy of tumors progresses continuously and so do devices, sharing a global market of about $ 4 billions, 
growing at an annual rate exceeding 5%. Most of the progress involves tumor targeting, multi-beam irradiation, reduction 
of damage on healthy tissues and critical organs, dose fractioning. This fast-evolving scenario is the moving benchmark 
for the progress of the laser-based accelerators towards clinical uses. As for electrons, both energy and dose requested by 
radiotherapy are available with plasma accelerators driven by lasers in the power range of tens of TW but several issues 
have still to be faced before getting a prototype device for clinical tests. They include capability of varying electron 
energy, stability of the process, reliability for medical users. On the other side hadron therapy, presently applied to a 
small fraction of cases but within an exponential growth, is a primary option for the future. With such a strong 
motivation, research on laser-based proton/ion acceleration has been supported in the last decade in order to get 
performances suitable to clinical standards. None of these performances has been achieved so far with laser techniques. 
In the meantime a rich crop of data have been obtained in radiobiological experiments performed with beams of particles 
produced with laser techniques. It is quite significant however that most of the experiments have been performed moving 
bio samples to laser labs, rather moving laser equipment to bio labs or clinical contexts. This give us the measure that 
laser community cannot so far provide practical devices usable by non-laser people. 
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1. INTRODUCTION 
 

It is time to check state of the art and perspective of laser technologies addressed at implementing compact particle 
accelerators for biological researches and clinical uses. During a recent editorial work1 I realized that the expectation 
level for this novel technology is quite high in a broad community of scientists, including laser, plasma and nuclear 
physicists, medical physicists, radiation biologists, radiologists and radiotherapists. Contributions from each one of these 
classes of expertise become highly desirable today to actually state where we are, where we should move and how. 
Physicists involved in the particle acceleration with laser techniques can provide not only the state of the art of laser-
driven electron, proton and ion accelerators most suitable for biological studies and future clinical therapies, but also a 
deep insight into the most advanced experiments and novel ideas. It will come out that laser produced particles have been 
used in a variety of physical schemes to generate secondary sources of high-energy photons, another kind of ionizing 
radiation, the most used in radiation therapy of tumors.  In turn, photons of tens of MeV have been used to produce, via 
photonuclear reactions, radionuclides of interest for the nuclear medicine. In addition, high-resolution ultrafast 
radiography has been performed with particles accelerated by laser2. On the other hand, radiotherapists can update our 
knowledge about the most advanced devices and protocols, very effective, they actually use in a hospital: the novel 
practice in radiotherapy of tumors is the benchmark (continuously moving forward) for the laser-driven technologies. 
While a number of biologists are systematically investigating the response of living matter to the particle bunches 
produced by lasers, some others are already speculating on how this new opportunity can extend and empower the most 
recent concepts of radiobiology. The action of such kind of radiation can be followed for the first time on femtosecond 
time scale and nanometric spatial scale. The novel acceleration technologies, based on the interaction of ultrashort 
intense laser pulses with matter, delivering sub-picosecond pulses of ionizing radiation, also demand a general renewing 
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of dosimetry3 and safety protocols. Both absolute and relative dosimetry are currently re-considered, in the framework of 
international standards4. While suitable existing devices are examined, including radiochromic foils, ionization chambers 
and Faraday cups, novel concepts for ad hoc detectors are introduced and need to be carefully investigated. Dosimetric 
simulations with Monte Carlo methods, in particular with the GEANT4 toolkit provide a precious support to this effort. 
Also radiological safety has to be reconsidered while thinking to transfer technologies based on high power lasers in a 
clinical context. It is not the same issue as with conventional accelerators delivering a well defined type of particle with 
an almost monoenergetic spectrum. We are dealing now with a mix of radiological products delivered by laser-matter 
interaction, at a given but changeable intensity, with a variety of materials acting as accelerating media. Of course this 
kind of problems have already been faced in high-power laser facilities devoted to studies on laser-matter interactions 
and in particular to particle acceleration, but for a medical facility the safety of patients and personnel is paramount, then 
also doses from any secondary radiation and any kind of other hazards have to be carefully minimized5. 
 
Though the rate of survivals increases regularly year by year, cancer is still the first cause of death everywhere.  The 
number of new cases of cancer in the world is estimated to have been about 14 millions in the year 2012, with an 
expectation of more than 20 millions in 20206.  About 50% of cases are treated with radiation therapies, possibly in 
combination with surgery and/or chemotherapy, with an emerging problem for the access of low- and middle-income 
countries (LMIC) to radiation therapy7, particularly to the more expensive hadron therapy. Among these treatments, more 
than 90% use RF-driven linear accelerators of electrons (RF-Linac). Other techniques include internal radiation 
(brachytherapy) and proton-ion beams (hadron therapy).  In most cases electrons delivered by a RF-linac are not used 
directly on the tumor but converted into photons (hard X-rays) by bremsstrahlung through a suitable target. In some case 
electrons are used directly, either to cure superficial tumors or in the Intra-Operative Radiation Therapy (IORT) which 
can be applied during surgical operation of a tumor8,9. Radiation therapy techniques evolve and progress continuously 
and so do accelerators and dose delivering devices, which share a global market of about $ 4 billions, growing at an 
annual rate exceeding 5%10. Most of the progress involves precision in tumor targeting, multi-beam irradiation, reduction 
of damage on healthy tissues and critical organs, fractionation of dose delivering for a more effective cure11. Among 
these novel techniques and protocols of treatment, particularly effective appears the so-called Cyberknife. This technique 
uses a multitude of small beams which creates a large dose gradient resulting in the delivery of high dose to the tumor 
while minimizing the dose to adjacent healthy tissues12.  
 
Basically, requested electron kinetic energy ranges from 4 to 25 MeV, but rarely energy above 15 MeV is used.  
Required dose/rate usually ranges from 1 to 10 Gy/min.  These two ranges of performances are presently well fulfilled by 
plasma accelerators driven by ultrashort laser pulses of “moderate” peak power, i.e. tens of TW, operating within high 
efficiency laser-plasma interaction regimes at a pulse repetition rate of the order of tens of Hz13.  However further work 
has to be done on laser acceleration in order to reach the clinical standard in terms of the electron output stability and 
reproducibility. Several tasks have to be afforded before proceeding to a technical design of a laser-driven linac 
prototype for clinical tests. A first task is the optimization of both laser and gas-jet (or other possible targets) as well as 
their coupling (involving mechanical stability and optical design). Another task is the energy control of the electron 
bunch to provide different electron energies on clinical demand.  These goals would require a complex scientific and 
technological investigation addressed to both the laser system, in order to make it as stable, simple and easy to use as 
possible, and the physics of the acceleration process, in order to get the highest possible efficiency, stability and output 
control. We may nevertheless try and list some of the expected advantages of future Laser-linac’s for clinical uses. Laser 
technology strongly reduces size and complexity of the acceleration section (Mini-linac) of the device; it also totally 
decouples the “driver” from the acceleration section: we can imagine in a hospital a single high power laser plant in a 
dedicated laser-room (with no need for radioprotection) which delivers pulses to a number of accelerators located in 
several treatment or operating rooms, suitably radioprotected. Laser managing and maintenance can proceed 
independently from the managing and maintenance of the Mini-linac’s. Each Mini-linac could be easily translated and 
rotated according to the given radiotherapy plan.  Current studies could prove that the extreme dose-rate per pulse 
delivered by the Laser-linac would reduce the total dose for a therapeutic effect.  This latter of course would be a major 
advantage of laser-driven radiotherapy. 
 
The original idea of Laser Wake-Field Acceleration14 and the advent of the decisive CPA laser technology15 originated 
one of the most appealing scientific case of the last decades. Since then, a number of schemes for laser driven 
acceleration of electrons in plasmas have been proposed and studied, some of which have been successfully tested till 
very recently16,17. New experimental records have been reported in the recent literature, in terms of the maximum 
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and light ions the work to be done still includes the identification of an acceleration regime able to produce particles of 
suitable energy (and energy spread) in bunches delivering the right dose. 
 
However, there is a major scientific issue which deserves to be addressed from now, concerning potential radiobiological 
effects of the extremely different duration of bunches produced by laser with respect to bunches produced by 
conventional accelerators. A factor exceeding 1,000,000 is involved, from μs to sub-ps timescale. The ultrashort duration 
of laser-produced particle bunches may involve unexpected consequences for cancer therapy. In fact, it is not known if 
delivering the same dose with particles of the same kinetic energy but at much higher instantaneous dose-rate may lead to 
a different tissutal effects with possible consequences on therapeutic strategy and protocols29. From the physical point of 
view we can expect that the extreme particle density we can produce in a bunch with laser acceleration could behave 
“collectively” and/or lead to non-linear effects which cannot be described by the usual single-particle Monte Carlo 
simulation.  In other words it is possible that each ultradense bunch of electrons could produce not only the statistic sum 
of the effects of each low-LET particle but also some high-LET effect due to the total charge involved. If this would be 
true, the biological action could not only concern DNA but also some structural cellular feature, like membrane. This 
major issue, in turn, calls for a dedicated research on radiobiological effects to be performed with the ultrashort particle 
bunches produced by laser technology.  It is evident that such a research also has a high conceptual value since it enables, 
for the first time, the investigation of very early processes occurring in the timescales of physical, chemical, biological 
responses of the living matter to ionizing radiation30. Investigation of very early effects arising from ultrashort ionizing 
pulses at nanometric scale become possible in a framework of advanced femtochemistry.  This opportunity move also the 
interest of biologists, aimed at improving the “OMIC” approach to radiation therapy31. Finally, it has be be pointed out 
that the use of laser in combination of an electron beam is capable of creating collimated energy-specific (and energy-
tunable) X-rays and γ-rays via the laser Compton scattering process32. Such high-energy quasi-monochromatic photon 
source can be very useful in radiation oncology. 
 
 

2. HADRON THERAPY AND LASER-INDUCED ION ACCELERATION 
 

In the year 1932, E. O. Lawrence (see Figure 3) and his group at University of California - Berkeley were able to 
accelerate protons to 1 MeV kinetic energy into their Cyclotron, based on a 11 inch magnet. Interestingly, his brother, Dr. 
John Lawrence, from University's Medical Physics Laboratory, already collaborated with him in studying medical and 
biological applications of the cyclotron, and himself became a consultant to the Institute of Cancer Research. The 
Cyclotron technology faced a decade of enthusiastic increase in proton energies with Nobel Prize assigned to E.O. 
Lawrence in 193933  till it was realized that energy was limited by the relativistic effect of the mass growth with velocity. 
The era started of synchro-cyclotrons and synchrotrons, basically the same big machines in operation today in the hadron 
therapy facilities.   
 
Just after WWII, in his decisive paper18, Robert Wilson from Harvard noticed that “The accelerators now being 
constructed or planned will yield protons of energies above 125 Mev (million electron volts) and perhaps as high as 400 
Mev. The range of a 125 Mev proton in tissue is 12 cm., while that of a 200 Mev proton is 27 cm. It is clear that such 
protons can penetrate to any part of the body.” and “the specific ionization or dose is many times less when the proton 
enter the tissue at high energy than it is in the last centimeter of the path where the ion is brought to rest.” All the future 
of the Hadron Therapy was simply depicted in these two sentences. More than 10 years later, John Lawrence published 
his first clinical study (see Figure 4) on “Proton irradiation of the pituitary” which opened the gate to all the subsequent 
works slowly leading to the present therapeutic protocols. 
 
While discussing the progress of Laser-induced Ion Acceleration (LIA) towards its application to cancer therapy and 
possibly complaining about its delays, Figure 5 should be carefully considered. The Radio-Frequency (RF) approach to 
ion acceleration asked some 25 years before getting kinetic energies suitable to deep tumor irradiation, almost 30 years to 
produce significant clinical tests. Since then, 30 years were spent to experiment on samples and treat a few thousands 
patients worldwide inside nuclear laboratories in order to setup suitable protocols and reliable statistics. More than 60 
years after the first cyclotron a huge device was built for the first time in a Hospital and devoted to patient treatment. 
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Figure 3.  Left: the first 4” Lawrence cyclotron (1930). Right: Lawrence standing close to his 27” cyclotron (1933) at UC-Berkeley. 

 
Figure 4.  Taken from the historic paper of Ref. 19. 
 
Only 10 years later both the numbers of installed clinical facilities and treated patient showed a really fast growth rate 
with a weak but sensible decrease in the last few years, possibly due to the global economical crisis.  Presently the 
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number of treatments performed with ions are a few percent of the total radiation treatments, while the ordinary X-ray 
radiotherapy based on electron linacs covers more than 90% of the cases. The story of LIA and its steps towards medical 
application is obviously shifted forward of several decades and could conventionally start with the invention of lasers 
delivering short pulses and more exactly when those pulses reached a suitable power, namely early Nineties. Whether the 
progress towards the medical application is comparable to the one performed by RF accelerators in a comparable period 
of time is hard to say, also because physical processes to be studied and applied were well assessed in the RF case, while 
laser acceleration in plasmas created from a variety of targets involves a number of physical processes and regimes 
almost never explored so far, whose modeling requires sophysticated, not always fully reliable, numerical calculations. 
This complex matter has been reviewed recently by several authors24,34,35 in the framework of the physics of laser-matter 
interaction at extreme intensities36. 

  
 
Figure 5.  Milestones on the hadron therapy road. 

 
Target Normal Sheath Acceleration (TNSA) is by far the most studied acceleration mechanism also in view of medical 
applications.  Typical proton spectra produced via TNSA are exponential-like up to a cut-off energy which has been so 
far well below 100 MeV with the largest available lasers. 67 MeV protons were obtained at LANL using a) 80 J pulse 
energy and b) hollow-cone microtargets37 a record result but both experimental features are not suitable for a Hospital 
device. The more suitable table-top lasers, typically having a few joule energy, presently allow to reach up to few tens of 
MeV. The use of targets with limited mass38 or surface structuring39 has recently moved the cut-off towards higher 
energies.  
 
A few years ago the exploitation of radiation pressure in laser plasma interaction at ultra-high intensity emerged from 
simulations as a brilliant solution to get quasi-monochromatic bunches of energetic ions40. The regime of Radiation 
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Pressure Acceleration (RPA) is usually split in two, namely Hole Boring (HB) and Light Sail (LS), depending on the 
thickness of the foil used as interaction target. The HB regime applies to thicker targets where the radiation pressure 
pushes as a piston the interaction surface causing its recession and the steepening of the density profile.  A first 
experiment used a CO2 infrared laser (��≃ 10 µm), for which nc ≃ 1019 cm−3, at a density approaching nc, using 
circularly polarized pulses at intensities up to 1016 W cm−2. A high-charge proton bunch, whose spectrum peaked at 1 
MeV was obtained41, with a substantial agreement with theory. Production of ion energies useful for medical applications 
requires substantial advances in CO2 laser technology42. Optical lasers (λ ≃ 1 mm) require the development of targets 
with suitable density values and profiles, by engineering high density gas jets43 or using low-density foams44. Differently 
from most of the acceleration regimes, the presence of a low-density plasma produced by the laser prepulse in front of 
solid targets may favor HB acceleration. The LS regime applies when very thin foil targets are used and the whole mass 
of the irradiated portion of the foil is pushed by radiation pressure. The LS’s scaling with pulse energy for ultrashort 
pulses is quite promising24, and quasi-monochromatic spectra are expected. However, first experimental investigations 
(see Ref. 45 and references therein) showed some promising results but also a number of optimization and stability issues. 
Recently, extremely intense and sharp rising fs pulses were focused on thin foils covered by a few-micron Carbon 
nanotube foam in order to induce self-focusing and self steepening of the pulse at a plasma density close to nc. Enhanced 
acceleration of carbon ions (up to •20 MeV energy per nucleon) with RPA-LS features has been obtained46. 
 
Collisionless shock acceleration (CSA) has been invoked as the mechanism leading to the generation of highly 
monoenergetic proton spectra (up to • 20 MeV energy) in the interaction of CO2 laser pulses with gaseous hydrogen jet 
targets47. The laser pulse was a sequence of 3 ps pulses with peak intensity I ≃ 6 1016 Wcm-2. The energy spread of less 
than 1% is the narrowest one observed in laser-plasma acceleration experiments. However, the number of accelerated 
protons is very low, apparently about three orders of magnitude lower than produced via HB acceleration in similar laser 
and target conditions41. Simulations47 suggest that CSA could scale with laser intensity in order to produce > 100 MeV 
protons, although this will require at least substantial upgrades in the laser system to allow an increase by two orders of 
magnitude in intensity. Demonstrating CSA with optical lasers requires the development of target media with suitable 
density profiles. Although often confused in the literature, HB and CSA are different processes, the latter being effective 
in the presence of hot electrons. As stated above, a very relevant difference is the number of ions accelerated per shot. In 
CSA, such number must be low in order to preserve a monoenergetic spectrum. 
 
A few experiments have investigated ion acceleration during the interaction with underdense gas jet targets, which would 
be suited to high repetition rate operation. In these experiments, ion acceleration typically occurs in the radial direction 
with respect to the laser propagation axis, as the result of the drilling of a low-density channel (see e.g. Ref. 48 and 
references therein); such uncollimated ion emission has low brilliance and is not ideal for applications. Collimated, 
longitudinal ion emission from a gas jet has been observed by focusing a 40-fs a laser pulse at 7 1017 W cm-2, achieving a 
surprisingly high cut-off of 20 MeV49.  The interpretation of these results is still not well assessed. It has to be mentioned 
that next generation lasers might allow a super-relativistic regime of efficient acceleration in underdense plasmas which 
has been foreseen theoretically almost two decades ago50. Once the quiver velocity reaches a given value, the electron  
mass equals the rest mass of proton, so that protons stick to electrons and are accelerated in a “snow-plow” mode with 
high efficiency. The simulations of Ref. 50 show that hundreds of MeV ions, collimated by self-generated magnetic 
fields, may be generated. Finally, for laser intensities above the relativistic transparency threshold for ultrathin targets, it 
is also possible to remove target electrons completely in a region with a size of the order of the focal radius. In such 
conditions, ions undergo a Coulomb explosion, i.e. they are accelerated by the electrostatic field generated by themselves 
which is the highest field attainable for a given target size. Differently from the same process undergoing in clusters51, 
Coulomb explosion in thin foils accelerates ions in a preferential direction52.  
 
Excluding the case of HB acceleration, in all the ion acceleration schemes a crucial role is played by the laser pulse 
contrast53, more exactly by the ratio between the main pulse peak power and the power associated with the light emitted 
by the laser chain before the main pulse itself. In Figure 5 the emitted power vs. time is sketched in a log-log diagram. 
Though all the early emission is often indicated as prepulse, the actual prepulse (left hand peak in Figure 5) is an 
ultrashort pulse, similar to the main pulse but much weaker, leaking from the electro-optical shutter out of the oscillator. 
This prepulse usually carries a negligible amount of energy (and power).  More dangerous is the amplified spontaneous 
emission (ASE), also called ASE pedestal, which lasts typically a few nanosecond and then carries a considerable amount 
of energy, comparable with the main pulse energy if the contrast is worse than 106.  In most of the previous experiments 
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on laser-driven proton acceleration this ns-contrast had to be increased above 109, with several means, including the 
“plasma mirror” technique54. Early emission a few picosecond before the main pulse involves the ps-contrast which is                  

 

 
Figure 5.  Time evolution of parasitic laser emission before and after the main pulse (image from Ref. 53). 
 

 
Figure 6.  Proton energy vs. foil thickness for high-contrast (HC) and low-contrast (LC) laser pulses (image from Ref. 55). 
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usually 3-4 orders of magnitude worse than the ASE-contrast, but carries much less energy.  It can be nevertheless 
dangerous as well. It can be reduced only assuring high quality and accuracy in the optical compression of the stretched 
amplified pulse at the end of the laser chain. A critical feature of the pre-pulse problem is that most of the undesired 
effects depend on the absolute value of the pre-pulse energy and power and not from the value of the contrast. In other 
words, increasing the laser power, as requested by most of the advanced schemes of acceleration, the contrast has to be 
increased correspondingly. This technical point deserves a special attention for the future of laser-driven ion accelerators. 
A clear example of the relevance of ultrashort laser pulse contrast was provided by the crucial experiment performed by 
Ceccotti et al. on thin targets55, as shown in Figure 6. 
 
Back to the ion accelerators presently operating in clinical background, their census at the end of the year 2015 was about 
80 worldwide, possibly they raised close to one hundred today. Though the spectrum of these devices is quite rich and 
varied, most of them deliver only protons and are based on standard design of cyclotrons, still the true “workhorse” of 
the proton therapy of tumors. Nevertheless synchrotron, the first machine implemented in a hospital at Loma Linda, is 
gaining positions in the race, also for his capability of accelerating both protons and C ions, like in the case of CNAO 
machine shown in Figure 2. A number of alternative devices are under intensive study and test, including the fixed-field 
alternating-gradient accelerators, proton linacs and dielectric wall accelerators. In the meantime also cyclotrons and 
synchrotrons are facing a true revolution in their design, in some case already introduced in the market. Most of novelties 
are due or linked to the use of superconductive materials in the construction of magnets both for the circular machines 
and for dipoles and quadrupoles assembled in the gantries, with a significant reduction of their weight and footprint.  As 
for the actual costs reduction, the scenario is still controversial. An excellent, concise review of the status of the art in 
this field has been published recently56. 
 
Try to compete just now with such a rich offer of clinical solutions would be frustrating for the Laser-induced Ion 
Acceleration (LIA) community. Nevertheless crude pessimism23 has to be rejected. It is clear that the possible application 
of LIA to Ion Beam Therapy (IBT) is still far away and that a long term research and development effort is needed to 
evaluate its real potential. Several projects are currently active worldwide57. For sure a great deal of innovation is 
required at each stage of the design of a future LIA-IBT facility, once standard beam parameters and reliability will be 
reached. Strict monoenergeticity may not be required a priori for IBT since the energy spectrum must be modulated in 
order to obtain the optimal “spread-out Bragg peak” distribution for an optimal dose delivery over the tumor region. 
Methods to obtain directly such distribution from the native spectrum of laser-accelerated ions have been investigated58. 
The possible success of LIA as an option for IBT also relies on exploiting the peculiar properties of laser-driven ion 
beams. One of the main advantages would be the option of optical transport to the treatment rooms rather than 
transporting and steering high energy ion beams with large magnets, so that all costs related to ion beam transport and 
radiation shielding on the way to the treatment room are removed. Such scenario would benefit further from the 
development of a compact beam handling system in replacement of the massive and costly gantries used in existing 
hadrontherapy facilities. Optical control combined with the dose concentration in small-duration bunches may have 
potential for the irradiation of moving targets59, which is a major challenge for the IBT of specific organs. Further 
progress in laser design, not necessarily towards higher pulse energies, together with ideation of new laser coupling and 
related processes could provide unexpected solutions. In particular production of few-cycle pulses of high energy seems 
to be a promising option. The recent proposal of a single-cycle high power fiber laser60 has triggered a new acceleration 
scheme26. 
 
Laser-driven ion sources have progressively revealed to be a unique tool for radiobiological studies, for several good 
reasons. First there is now a variety of facilities, differing each other by relevant features, allowing a broad range of 
investigations on biological samples with a degree of availability and flexibility unthinkable with ordinary accelerators 
either operating in nuclear labs or hospitals. Second, the particle energy provided presently by most of the laser-plasma 
devices ranges between 1 MeV and a few tens of MeV. Though it is too low for therapy of deep tumors, this range of 
energy includes the energy of particles at Bragg peaks for any kind of tissues. By using thin layers of sensible tissue or 
cultures, including tumor cells and ill tissues, it is possible to investigate the radiological action straight in the condition 
occurring around the Bragg region, i.e. the region of therapeutical interest. Third, the particle bunches provided by laser 
techniques can deliver on sample an unprecedented dose-rate, several orders of magnitude higher than any other device, 
so allowing to study unexplored regimes of very high specific dose. In this condition each cell can be reached by a 
number >>1 of particles in a time period much shorter than any DNA repairing time. It is also possible investigate the 
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occurrence of non-linear or collective effects induced by such “dense” ionizing radiation. The high dose rate is partly due 
to the high charge attainable with laser techniques but mostly to the ultra-short duration of the bunches. This latter 
feature actually is the fourth good reason for using laser acceleration, since it could allow for the first time to investigate 
very early processes in the complicate chain of physical, chemical and biological effects leading to either cure of tumors 
or damage of healthy tissues. 
 
This unique opportunity has also triggered the advance of specific dosimetry61,62. In single shot irradiations, on-cell dose 
rates of the order of 109 Gy s−1 have been estimated63 from measurements. Such values are some nine orders of 
magnitude higher than with conventional means. It is therefore important to assess the biological effect of laser-driven 
ions with respect to conventional ion beams used in IBT and to other sources of radiation. To this aim, the Relative 
Biological Effectiveness (RBE) has been measured in several experiments. Two fundamental experiments64,65 by Yogo et 
al. at JAEA lab in Japan with • 2 MeV laser-accelerated protons found a RBE value of 1.2 ± 0.1, comparable to that of 
protons from conventional accelerators66 having a similar value of Linear Energy Transfer (LET). Those experiments 
were also relevant for their sophisticated set-up of magnets  allowing to separate the protons from electrons and photons, 
deflect the proton beam first towards an energy selecting pinhole, then towards the sample as shown in Figure 7. 
 
 

 
Figure 7.  Layout and details describing the second Yogo’s experiment64 equipped with Energy-Selection System (image from Ref. 25). 
 
 
Another interesting biological application of energetic protons and ions produced with laser techniques is radiography2.  
In fact, the unique properties of protons, multicharged ions and electron beams generated by high-intensity laser-matter 
interactions, particularly in terms of spatial quality and temporal duration, have opened up a totally new area of high-
resolution radiography. Laser-driven radiographic sources obtained by irradiation of clustered gases were proved to be 
particularly effective, leading to large-field high-contrast images with 1 µm spatial resolution. Faenov et al.67 produced  > 
1018 multicharged carbon and oxygen ions per laser shot by irradiating CO2 clusters from a gas-jet.  The ion energy was 
measured to be  ≥  300 KeV.  With such rather divergent but uniform ion beam, ionography of a spider net revealed 
submicron details, as shown in Fig. 7. 
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or limited number of fractions to a small volume encompassing the tumor while minimizing the dose to adjacent normal 
structures due to a large dose gradient and therefore reducing the risk of sequelae. It uses a multitude of small beams 
requiring extremely precise control of position and movement of the linear accelerator. Moreover, SRT needs a real-time 
image-guided technique that tracks the target during treatment allowing an automatic reset based on the acquired image. 
SRT enables hypo-fractionated treatments, i.e strong doses delivered in a small number of fractions, due to its high level 
of accuracy.  
 
If we limit our consideration to energy and dose, present table-top laser driven electron accelerators can be already 
considered as competitors of the RF-linac’s. In fact, most of the performances usually asked to electron bunches, 
including energy range and delivered dose have been achieved. Collimation, monochromaticity, pointing stability, etc. 
are requested at a moderate levels already available with laser techniques, while the main effort has still to be addressed 
to efficiency, stability and reliability of the process in order to provide clinically acceptable devices. As far as the 
efficiency is concerned, in an experiment performed at CEA-Saclay (France) a regime of electron acceleration of high 
efficiency was found, using a 10 TW laser and a supersonic jet of Helium13.  This table-top accelerator delivered high-
charge (nC), reproducible, fairly collimated, and quasimonochromatic electron bunches, with peak energy in the range 
10–45 MeV.   In Figure 8 a typical cross section of the relativistic electron beam at 25 MeV is shown, after de-
convolution of experimental data from the SHEEBA radiochromic film stack device74.  
 
 

 
Figure 8 .   25-MeV electron beam cross section (image from Ref. 13). 

 
 
3D particle-in-cell simulation performed with the numerical code CALDER75 revealed that the unprecedented efficiency 
of this accelerator was due to the achievement of a physical regime in which multiple electron bunches are accelerated in 
the gas-jet plasma during the action of each laser shot. With this experiment, laser driven electron acceleration 
approached the threshold of suitability for medical uses, in particular for Intra-Operative Radiation Therapy (IORT) of 
tumors8,9. Comparison of the main parameters of electron bunches produced by a commercial RF Hospital accelerator for 
IORT treatment and those of the that laser driven accelerator is shown in the Table 1. Notice that, while main clinical 
parameters, including mean current and released energy (proportional to the dose) are comparable, bunch duration is 106 

times shorter and consequently the peak current (proportional to max the dose-rate) 106 times higher. In the same 
experiment electron bunches of  ≈ 40 MeV were converted, via bremsstrahlung in a tantalum foil, into gamma rays with 
a strong component in the range 10-20 Mev, which matches the Giant Dipole Resonance of nuclei.  This gamma rays 
could in turn activate a foil of gold according to the nuclear reaction 197Au(γ,n)196Au. The number of radioactive gold 
atoms produced in this way was measured13. This achievement opens the way to table-top laser-driven nuclear physics 
and production of radio-isotopes for medical uses.  
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Table 1.  Comparison between commercial RF-linac’s and the experimental Laser-linac (table from Ref. 53). 
 
As already said in the Introduction, in most cases electrons delivered by a RF-linac currently used in Hospitals, are not 
sent directly on the tumor but previously converted into photons (hard X-rays) by bremsstrahlung through a suitable 
target. Of course this is possible also for electrons of comparable energy currently produced in high-power laser labs. 
Laser-driven electron accelerators would be then ready and produce X-rays for clinical uses provided a suitable stability, 
uniformity and reproducibility of the electron bunches will be reached. The Laser-driven Electron Accelerator for 
Radiotherapy of Cancer (LEARC) project76 aims at speeding up the transfer of a novel laser-based technology to 
radiotherapy of cancer. The first point to be addressed is to make the driving laser, suitable for efficient acceleration, as 
reliable and easy to use as possible, with a duty cycle allowing an effective medical use. Second, the laser beam transport 
to the mini-linac located close to the patient has to be optimized. Third, the most important point, provide the mini-linac 
with an acceleration process stable and reproducible at each laser shot, also at high repetition rates. This task needs the 
detailed investigation of both known and novel acceleration schemes and then the optimization of both laser and target 
parameters. Gas jets are the most investigated targets so far and a special effort will be devoted in making them fully 
operative at high repetition rate. But other targets can be considered and studied to produce the palsma acceleration path, 
including gas cells and thin foil stripes. A crucial and difficult task is to deliver electrons of the requested energy and 
change their energy on demand. Several experiments proved this possibility at some extent but the methods used are 
hardly transferable in a clinical device which exclude continuous tuning  or frequent re-tuning of its components. It has 
to be recognized that ultrashort laser systems and laser-plasma interactions are not easy to handle and put under complete 
control. 
 
It is also interesting to consider electrons of energies outside the energy range between 1 and 25 MeV currently provided 
by commercial accelerators for radiation therapy. Both extremes of sub-relativistic and very high energy electrons 
(VHEE) are presently studied in view of specific applications. Recently, outstanding performances were obtained with 
sub-MeV electron bunches produced by the LESM laser-plasma device77. This source delivers ultrashort bunches of 
electrons with kinetic energy around 300 keV, uniformly over a large solid angle.  The device is presently setup for 
radiobiological tests covering a previously untested energy range. Each bunch combines high charge with short duration 
and sub-millimeter range into a record instantaneous dose rate, as high as 109 Gy/s. Both such a high dose rate and high 
level of Relative Biological Effectiveness, attached to sub-MeV electrons, make this source very attractive for 
radiobiological tests on thin samples of living cells in similar way as discussed in the previous section for sub-relativistic 
protons. On the opposite side, very high energy electrons (VHEEs) with energies in the range 150-250 MeV, which 
penetrate deeply into tissue where the dose can be absorbed within the tumor volume with a relatively small penumbra  
have been proposed for radiation therapy of tumors a few years ago78. Electrons in this range of energy can be produced 
with plasma acceleration driven by laser of hundreds of TW. Parameters of bunches of such an energy and their 
dosimetry is under active investigation79,80. 

 
Linac 

 
IORT-NOVAC7 LIAC Laser-Linac  

(experimental) 
Company (SORDINA SpA) (Info & Tech Srl) (CEA-Saclay) 

    
Max Electron Energy 10 MeV 12 MeV 45 MeV 
Available Energies (3, 5, 7, 9 MeV) (4, 6, 9, 12 MeV) (5 to 45 MeV) 

    
Peak current 1.5 mA 1.5 mA > 1.6 KA 

Bunch duration 4 µs   1.2µs < 1 ps 
Bunch charge 6 nC 1.8 nC 1.6 nC 

    
Repetition rate 5 Hz 5-20 Hz  10 Hz 
Mean current 30 nA @5Hz 18 nA @10Hz 16 nA @10Hz 

    
Released en. in 1 min. 18 J @ 9 MeV  14 J @12 MeV  21 J @20 MeV  
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Electron average energy 260 keV

Spectral shape exponential

Bunch divergence 20° FWHM 

Bunch charge > 100 pC

Repetition rate up to 10 Hz

Bunch duration on the 

sample

3.5 ps

Peak current > 100A

Non-uniformity on sample < 10% (over 25 

shots) 
Stopping power in water 2.49 MeV cm2/g

Range in water 0.68 mm

Dose per pulse 3.5 ± 0.3 mGy

Peak dose rate 109 Gy/s

Average dose rate 35 mGy/s

Table 2 Main features of the laser-driven sub-relativistic electron sources LESM (table from Ref. 77). 
 
 
Secondary sources of high-energy photons are another exciting by-product of laser-driven electron acceleration. They 
include the above mentioned bremsstrahlung sources and betatron sources originated during the laser wakefield process 
itself by the strong restoring forces acting on the electron bunches. Further, the electron beam produced by laser-driven 
acceleration can be sent to collide with another powerful laser pulse and produce energetic photons by Compton 
scattering32,81. Generation of radiation via Thomson scattering of a laser pulse by energetic counter-propagating electrons 
was initially proposed in 196382,83 as a quasi monochromatic and polarized photons source. With the development of 
ultra intense lasers the interest on this process has grown and the process is now being exploited as a bright source of 
energetic photons from UV to gamma-rays and atto-second sources in the full nonlinear regime. In view of medical 
application, tuneability of the X-ray photon energy may be an important option of an all-optical laser-based Thomson 
source. Recent experiments performed by Sarri et al.84 and Liu et al.85 obtained photons of several tens of MeV and 
opened a new phase of these studies. 
 
We mentioned in the previous Section radiography performed with protons and ions. A similar technique has been used 
also with electron beams produced by laser-driven accelerators86. The laser-driven electron sources included  interaction 
with both ordinary and clustered gas jets87. Figure 9 shows an example of test samples and their electron radiography 
obtained from a laser-produced electron beam. Resolution in this case was better than 60 µm, but 10 µm can be achieved. 
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Figure 9.   The sample (left) and its own electron radiograph. Overall size: 35 mm x 48 mm (image from Ref. 83). 
Radiobiological studies with relativistic electrons generated by laser-plasma interactions, including evaluation of their 
RBE, have been performed in the last decade. Results have been also compared with RBE of electrons produced with  
conventional RF-linac’s88,89. Very recently, a multidisciplinary team of scientists performed an RBE evaluation of 
electrons from a laser-driven accelerator impinging on several cell lines (including tumor tissues). The experiment 
included measurements of Micronucleus Frequency, Telomere Shortening and Cell Viability (see Figure 10). The same 
cell lines were also irradiated with  standard reference X-rays and electrons from a RF-linac for IORT. The three series of 
results were compared, giving comparable values within the error bars, except for a single cell line for which the laser-
produced electron bunches resulted slightly more effective90. 
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On A New Kind of Rays*

Wilhelm Konrad Röntgen

I. A discharge from a large induction
coil is passed through a Hittorf's vacuum
tube, or through a well- exhausted
Crookes' or Lenard's tube. The tube
is surrounded by a fairly close- fitting
shield of black paper; it is then
possible to see. in a completely dark-
ened room, that paper covered on
one side with barium platinocyanide
lights up with brilliant fluorescence
when brought into the neighborhood of
the tube, whether the painted side or the
other be turned towards the tube. The
fluorescence is still visible at two metres
distance. It is easy to show that the
origin of the fluorescence lies within the
vacuum tube.

2. It is seen, therefore, that some agent
is capable of penetrating black card-

 

 

last 25 years, the community of scientists working on laser-driven particle acceleration grew up and many great, 
somehow unexpected results were obtained. 
 

 
 
Figure 11. The incipit of the 1895 Roentgen paper 
 
This is “from where” we come. This short-review paper try to provide the community with some elements to understand 
“where we are” and maybe a few indication on “where to go”. For sure the scientific crop of these enthusiastic years was 
considerable, in laser and plasma physics, radiation physics, radiation biology. How far we are from setting up a 
prototype device for clinical use is hard to say. Maybe a little closer for electrons (and then photons), a little farer for 
proton/ions. For sure there is no reason for giving this exciting navigation up, since we have progress of knowledge as 
our lighthouse: successful landing may be not so far. 
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